Для тушения пожара используют пожарные гидранты - устройства на водопроводной сети (давление в которой 3.9*10^5 па), позволяющее подключать оборудование, обеспечивающее подачу воды для тушения пожара. На какую высоту поднимется вода из вертикально расположенного пожарного рукава, подключенного к такому гидранту, если потерями энергии пренебречь? (Принять g-10н/кг) На какую высоту будет бить вода (в метрах)
• нам полезно изменить потенциальную энергию тела, которое мы поднимаем по наклонной плоскости. у подножия плоскости высота равна нулю, тогда Aполез = mgH
• работа затраченная определяется работой силы тяги, посредством которой мы поднимаем груз на наклонную плоскость: Азатр = Атяг
Атяг = Fтяг S
пусть поднятие осуществляется равномерно и прямолинейно, тогда геометрическая сумма всех сил, действующих на тело, равна нулю
на тело действуют:
• сила тяжести
• сила тяги
• сила трения
• сила нормальной реакции опоры
направим ось вдоль плоскости вверх, в проекции на нее получим
Fтяг - Fтр - mgsinα = 0,
Fтяг = u mgcosα + mgsinα = mg (u cosα + sinα).
тогда работа силы тяги равна Атяг = mgL (u cosα + sinα).
соответственно, КПД равен n = (mgH)/(mgL (u cosα + sinα),
n = H/(L(u cosα + sinα)), где
sinα = H/L,
cosα = √(1-sin²α).
при желании, можно вывести формулу без синуса и косинуса, но это лишнее
R₁ = 259.8 H; R₂ = 150 H
Объяснение:
Будем считать, угол между левой и правой опорными плоскостями равен 90°.
G = 300H
R₁ - ? - реакция правой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
R₂ - ? - реакция левой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
Очевидно, что R₁ ⊥ R₂
Проецируем систему сил на направление R₁
R₁ - G · cos 30° = 0
R₁ = G · cos 30° = 300 · 0.866 = 259.8 (H)
Проецируем систему сил на направление R₂
R₂ - G · sin 30° = 0
R₂ = G · sin 30° = 300 · 0.5 = 150 (H)