Машинист поезда, движущегося со скоростью десять метров в секунду, начал тормозить на расстоянии пятьсот метров от железнодорожной станции. Необходимо: определить положение поезда через двадцать секунд, если при торможении его ускорение равно0,1 м/с2.Дано: v0 = 10 м/с; s = 500 м; t = 20 с; a = 0,1 м/с2 Найти: x — ?Решение:Формула уравнения движения поезда, записывается следующим образом,где x0 = 0; v0 = 20 м/с; a = -0,1 м/с2, так как движение поезда равнозамедленное.Определим положение поезда, подставив числовые значения в уравнение движения м.ответ: x = 180 м.
Тело по параболе (вертикальная координата) движется в соответствии с уравнением y(t)=vo*sin(α)*t*-0,5*9,81*t², где 9,81 - ускорение свободного падения. y(t)=640*t*sin(30)-0,5*9,81*t²=1200⇒1200=640*0,5*t-4,905*t²⇒-4,905*t²+320*t-1200=0, далее решаем квадратное уравнение известным алгоритмом и находим, что t1=3,995 секунды и t2=61,245 секунды. В ответ берём меньшее время (первое от момента броска, второе наступает после пролёта телом точки максимального подъёма). ответ: искомое время составляет 3,995 секунды.
Необходимо: определить положение поезда через двадцать секунд, если при торможении его ускорение равно0,1 м/с2.Дано: v0 = 10 м/с; s = 500 м; t = 20 с; a = 0,1 м/с2
Найти: x — ?Решение:Формула уравнения движения поезда, записывается следующим образом,где x0 = 0; v0 = 20 м/с; a = -0,1 м/с2, так как движение поезда равнозамедленное.Определим положение поезда, подставив числовые значения в уравнение движения м.ответ: x = 180 м.