Два маленьких заряженных шарика с зарядами +2q и -4q , привели в соприкосновение и раздвинули на прежнее расстояние. Как изменится модуль напряженности электрического поля в точке посередине между зарядами?
1)Когда масса нити по отношении к массе маятника стремится к нулю, маятник колеблится на не растежимой нити в вакуме при этом сила трения стремится тоже к нулю. 2)Если Вас интересует описание колебаний, скажем, маятников, то достаточно уравнения: d²/dt² q(t) + w² q(t) = F(t) (q(t) - координата тела в момент t) При F(t)=0 колебания свободные, в другом случае - вынужденные. Частота колебаний (w²) определяется для различных типов маятников по-разному: Пружинный w²=k/m (k - жёсткость пружины, m - масса груза) Физический w²= mgL/I (I - момент инерции, L - рассточние до места подвеса) Колеб-й контур w² = 1/(LC) (L - индуктивность, C - ёмкость)
Решением уравнения является периодическая функция q(t) = A*Cos(w*t+a) (A - амплитуда колебаний, a - начальная фаза) Обычно так и говорят "Будем искать решение уравнения в виде...". Для того, чтобы решить дифф. уравнение второго порядка, нужны начальные условия: знать, чему равна координата в начальный момент времени и первая производная: {q(0), q'(0)}. Зная их мы можем решить уравнение и определить константы A и a.
А вот решение уравнений колебаний вообще - типа (все производные - частные): d²/dt² q(t,r) = A Lapl(q(t,r)) Здесь Lapl() оператор Лапласа, его вид зависит от системы координат. В декартовой: Lapl = {d²/dx²;d²/dy²;d²/dz²}. Это вообще отдельная тема, здесь просто не опишешь. 3)Из формулы циклической частоты w=2п*v ( w -циклическая частота=2,5п рад/c, v -частота ), выразим частоту v. v= w / 2п . v=2,5п / 2п =1,25Гц. Период и частота обратно пропорциональны: Т=1 / v . T= 1 / 1,25 =0,8c. v=1,25Гц , Т=0,8с.
Лыжник, набрав скорость при спуске с горы, далее движется на прямом участке по инерции - отдыхает, в кёрлинге камень кидют о льду и и он движется чисто по инерции, саночники и бобслеисты разгоняются, сначала сами, потом с горы, и инерция снаряда участвует в движении, в суммо борец использует инерцию своего тела, чтобы вытолкнуть противниа из круга, в автогонках инерция препятствует торможению и из-за неё машины частенько вылетают с трассы. 2В.сё что связано с мячом...(игры) мяч везде летает по инерции... очень заметно инерцию при аварии ,если не защищён от инерции ремнём безопасности то вылетаешь в лобовое стекло по инерции ..
2)Если Вас интересует описание колебаний, скажем, маятников, то достаточно уравнения:
d²/dt² q(t) + w² q(t) = F(t) (q(t) - координата тела в момент t)
При F(t)=0 колебания свободные, в другом случае - вынужденные. Частота колебаний (w²) определяется для различных типов маятников по-разному:
Пружинный w²=k/m (k - жёсткость пружины, m - масса груза)
Физический w²= mgL/I (I - момент инерции, L - рассточние до места подвеса)
Колеб-й контур w² = 1/(LC) (L - индуктивность, C - ёмкость)
Решением уравнения является периодическая функция
q(t) = A*Cos(w*t+a) (A - амплитуда колебаний, a - начальная фаза)
Обычно так и говорят "Будем искать решение уравнения в виде...". Для того, чтобы решить дифф. уравнение второго порядка, нужны начальные условия: знать, чему равна координата в начальный момент времени и первая производная: {q(0), q'(0)}. Зная их мы можем решить уравнение и определить константы A и a.
А вот решение уравнений колебаний вообще - типа (все производные - частные):
d²/dt² q(t,r) = A Lapl(q(t,r))
Здесь Lapl() оператор Лапласа, его вид зависит от системы координат. В декартовой: Lapl = {d²/dx²;d²/dy²;d²/dz²}.
Это вообще отдельная тема, здесь просто не опишешь.
3)Из формулы циклической частоты w=2п*v ( w -циклическая частота=2,5п рад/c,
v -частота ), выразим частоту v. v= w / 2п . v=2,5п / 2п =1,25Гц.
Период и частота обратно пропорциональны: Т=1 / v .
T= 1 / 1,25 =0,8c.
v=1,25Гц , Т=0,8с.
2В.сё что связано с мячом...(игры) мяч везде летает по инерции...
очень заметно инерцию при аварии ,если не защищён от инерции ремнём безопасности то вылетаешь в лобовое стекло по инерции ..