Решение: Средняя скорость автомобиля равна: Vср.=(S1+S2)/(t1+t2) Расстояние первой части пути, проехавшего автомобиля составляет: S=V*t S1=4v/5*t1=4v*t1/5 Расстояние второй части пути, проехавшего автомобиля составляет: S2=2v*t2 А так как средняя скорость на всём пути равна 2v, составим уравнение: (4v*t1/5+2v*t2)/(t1+t2)=v 4v*t1/5+2v*t2=v*(t1+t2) приведём уравнение к общему знаменателю 5 4v*t1+5*2v*t2=5*v*(t1+t2) v*(4t1+10t2)=v*(5t1+5t2) Разделим левую и правую части уравнения на (v) 4t1+10t2=5t1+5t2 4t1-5t1=5t2-10t2 -t1=-5t2 умножим левую и правую части уравнения на (-1) t1=5t2 Отсюда следует, что соотношение времени равно: t1/t2=1/5
Объяснение:
Дано:
m = 800 г = 0,8 кг
p₁ = 1,6 кПа = 1600 Па
p₂ = 5·p₁ = 5·1600 = 8000 Па
p₃ = p₂/2 = 8000 / 2 = 4000 Па
ρ - ?
Пусть размеры бруска a×b×c
Тогда:
S₁ = a·b
S₂ =b·c
S₃ = a·c
Имеем:
p₁ = m·g / S₁; S₁ = m·g / p₁ = 0,8·10/1600 = 0,005 м²
p₂ = m·g / S₂; S₂ = m·g / p₂ = 0,8·10/8000 = 0,001 м²
p₃ = m·g / S₃; S₃= m·g / p₃ = 0,8·10/4000 = 0,002 м²
Решим систему:
a·b = 0,005
b·c = 0,001
a·c = 0,002
Получаем:
a = 10 см
b = 5 см
c = 2 см
Объем:
V = 10·5·2 = 100 см³
Плотность:
ρ = m/V = 800 / 100 = 8 г/см³
Средняя скорость автомобиля равна:
Vср.=(S1+S2)/(t1+t2)
Расстояние первой части пути, проехавшего автомобиля составляет: S=V*t
S1=4v/5*t1=4v*t1/5
Расстояние второй части пути, проехавшего автомобиля составляет:
S2=2v*t2
А так как средняя скорость на всём пути равна 2v, составим уравнение:
(4v*t1/5+2v*t2)/(t1+t2)=v
4v*t1/5+2v*t2=v*(t1+t2) приведём уравнение к общему знаменателю 5
4v*t1+5*2v*t2=5*v*(t1+t2)
v*(4t1+10t2)=v*(5t1+5t2) Разделим левую и правую части уравнения на (v)
4t1+10t2=5t1+5t2
4t1-5t1=5t2-10t2
-t1=-5t2 умножим левую и правую части уравнения на (-1)
t1=5t2
Отсюда следует, что соотношение времени равно:
t1/t2=1/5