Электрическая цепь состоит из идеальной батарейки с U0=15,0 В,идеального вольт метра, нескольких резисторов R=10 Ом и резистора с неизвестным сопротивлением R1.На одном из резисторов выделяется тепловая мощность P=3,6 Вт
Г=f/d=0,2/0,2=1 линейное увеличение (тут высота предмета и его изображение одинаковы,
так же как и одинаковы расстояние от предмета до линзы и расстояние от линзы до изображения)
Задача которая выше ( над 4задачей):
Дано:
f=30см=0,3м
D=4дптр
Г-? Линейное увеличение
Г=f/d
d найдём из формулы тонкой линзы
1/d=D-1/f=0,66
d=1,5м
Теперь подставляем и находим линейное увеличение Г
Г=f/d=0,3/1,5=0,2 ( высота предмета в пять раз больше высоты изображения, а расстояние от предмета до линзы в пять раз больше расстояния от линзы до изображения)
Рассмотрим каждый из случаев. Для построения используем два луча: номер 1 - луч, идущий параллельно главной оптической оси и после прохождения через линзу пересекающий ось в фокусе линзы, номер 2 - луч проходящий через оптический центр линзы. Пересечение лучей является изображением точки.
2F) В результате построения получаются два треугольника: АBO и A'B'O. Эти треугольники подобны по углу β (вертикальные углы) и углам A и A' (прямые углы). Но они оказываются ещё и равными, т.к. АО = А'O, следовательно если равны эти две стороны, то равны и остальные: BO = B'O, AB = A'B',
AB = h предмета, а A'B' = H изображения. Высота изображения и высота предмета равны друг другу.
F) Луч номер 2 идёт параллельно лучу номер 1 (это следует из равенства треугольников АBO и A'B'O по прямым углам А и А', которые ещё и соответственные, а также - по сторонам AO и A'О). Из классической геометрии известно, что две параллельные не могут пересечься. Если нет пересечения, то нет изображения.
4F и 3F) Высота изображения получается меньше, чем высота предмета.
При нахождении предмета в точке 2F на оптической оси высоты предмета и изображения равны. Почему они равны - объясняется выше. Кроме того - точки предмета и изображения попарно находятся на равных расстояниях от центра О, который является в данном случае для них геометрическим местом (к примеру точка А на отрезке АB и точка А' на отрезке A'B' находятся на одинаковом расстоянии от центра О). Но, передвигая предмет дальше от линзы, картина не сохраняется - изображение уменьшается. Луч номер 1 после прохождения через линзу всегда проходит через её фокус. А луч номер 2 меняет своё направление по мере отдаления предмета от линзы - он всегда проходит через оптический центр, и при всё большем и большем удалении предмета от линзы, этот луч всё больше и больше стремится как бы слиться с главной оптической осью. Это хорошо видно, если сравнить рисунки 2F, 3F и 4F между собой. И т.к. луч номер 1 не меняет своего направления, а луч номер 2 стремится к сонаправленности с осью, то чем дальше находится предмет от линзы, тем ближе к главной оптической оси становится точка пересечения лучей 1 и 2.
Ещё можно увидеть такую зависимость: чем меньше угол α между лучами 1 и 2 (или между лучом 2 и главной оптической осью - углы равны, т.к. являются накрест лежащими), тем меньше высота H изображения: α1 < α2 => H1 < H2
ответ: когда предмет находится на расстояниях 4F и 3F от линзы.
Объяснение:
4 задача на фото:
Дано :
D=10дптр
f=20см=0,2м
d-? -Расстояние от предмета до линзы
Г-? Линейное увеличение
1/d=D-1/f
1/d=10-5=5
d=0,2м=20см -расстояние от предмета до линзы
Г=f/d=0,2/0,2=1 линейное увеличение (тут высота предмета и его изображение одинаковы,
так же как и одинаковы расстояние от предмета до линзы и расстояние от линзы до изображения)
Задача которая выше ( над 4задачей):
Дано:
f=30см=0,3м
D=4дптр
Г-? Линейное увеличение
Г=f/d
d найдём из формулы тонкой линзы
1/d=D-1/f=0,66
d=1,5м
Теперь подставляем и находим линейное увеличение Г
Г=f/d=0,3/1,5=0,2 ( высота предмета в пять раз больше высоты изображения, а расстояние от предмета до линзы в пять раз больше расстояния от линзы до изображения)
Рассмотрим каждый из случаев. Для построения используем два луча: номер 1 - луч, идущий параллельно главной оптической оси и после прохождения через линзу пересекающий ось в фокусе линзы, номер 2 - луч проходящий через оптический центр линзы. Пересечение лучей является изображением точки.
2F) В результате построения получаются два треугольника: АBO и A'B'O. Эти треугольники подобны по углу β (вертикальные углы) и углам A и A' (прямые углы). Но они оказываются ещё и равными, т.к. АО = А'O, следовательно если равны эти две стороны, то равны и остальные: BO = B'O, AB = A'B',
AB = h предмета, а A'B' = H изображения. Высота изображения и высота предмета равны друг другу.
F) Луч номер 2 идёт параллельно лучу номер 1 (это следует из равенства треугольников АBO и A'B'O по прямым углам А и А', которые ещё и соответственные, а также - по сторонам AO и A'О). Из классической геометрии известно, что две параллельные не могут пересечься. Если нет пересечения, то нет изображения.
4F и 3F) Высота изображения получается меньше, чем высота предмета.
При нахождении предмета в точке 2F на оптической оси высоты предмета и изображения равны. Почему они равны - объясняется выше. Кроме того - точки предмета и изображения попарно находятся на равных расстояниях от центра О, который является в данном случае для них геометрическим местом (к примеру точка А на отрезке АB и точка А' на отрезке A'B' находятся на одинаковом расстоянии от центра О). Но, передвигая предмет дальше от линзы, картина не сохраняется - изображение уменьшается. Луч номер 1 после прохождения через линзу всегда проходит через её фокус. А луч номер 2 меняет своё направление по мере отдаления предмета от линзы - он всегда проходит через оптический центр, и при всё большем и большем удалении предмета от линзы, этот луч всё больше и больше стремится как бы слиться с главной оптической осью. Это хорошо видно, если сравнить рисунки 2F, 3F и 4F между собой. И т.к. луч номер 1 не меняет своего направления, а луч номер 2 стремится к сонаправленности с осью, то чем дальше находится предмет от линзы, тем ближе к главной оптической оси становится точка пересечения лучей 1 и 2.
Ещё можно увидеть такую зависимость: чем меньше угол α между лучами 1 и 2 (или между лучом 2 и главной оптической осью - углы равны, т.к. являются накрест лежащими), тем меньше высота H изображения: α1 < α2 => H1 < H2
ответ: когда предмет находится на расстояниях 4F и 3F от линзы.
Объяснение: