Электричка идет с постоянной скоростью мимо платформы, не оствнавливаясь. пассажир электрички заметил,что он проехал мимо платформы за t1=8c. пассажир стоящий на платформе отметил,что поезд покинул платформу через t2=14c после въезда.найти отношение длины платформы к длине поезда.
P = n k M V^2 / 3R => n = 3 R P / k M V^2 = 3*8,31*10^4 / 1,38*10^-23*2*10^-3*64*10^4=24,93*10^4 / 176,64*10^-22 = 0,141*10^26 мол-л/м^3
2. n = N / V; N = m / m0; m0 = M / Na
n = p Na / M = 0,13*6*10^23 / 32*10^-3 = 0,0243*10^26 мол-л/м^3
3. Ek=3/2 * k T; V^2= 3RT / M => T = M V^2 / 3R
Ek = 1,5 k M V^2 / 3R = 1,5*1,38*10^-23*32*10^-3*25*10^4 / 3*8,31 = 1656*10^-22 / 24,93 = 66,425*10^-22 Дж
4. P = 2/3 * Ek n = 2*5*10^-23*16*10^25 / 3 = 53,3*10^2 Па
15,5 ч
Объяснение:
Туда поезд ехал с учетом разницы во времени между пунктами отправления и назначения 17 часов 30 минут
Обратно поезд ехал тоже с учетом разницы во времени 13 часов 30 минут.
Известно, что время туда и время обратно должно совпадать, но у нас получается разница в 4 часа на дорогу в обе стороны. Значит половина этого времени (2 часа) прибавляется к времени в пути "туда", а вторая половина (2 часа) вычитается из времени в пути "обратно"
Отсюда находим что поезд фактически находился в пути "туда" 17ч30м минус 2 часа = 15 часов 30 минут, и фактически находился в пути "обратно" 13ч30м плюс 2 часа= 15 часов 30 минут. Округляя в десятичном виде до десятых получаем 15,5 ч.