Масса ядра меньше то явление называется "Дефект массы" - уменьшение массы атома по сравнению с суммарной массой всех отдельно взятых составляющих его элементарных частиц, обусловленное энергией их связи в атоме.
Если "разобрать" ядро атома на отдельные протоны и нейтроны (например, с ядерной реакции) , то их масса вновь примет именно те значения, которые нам уже известны: 1,00728 а. е. м. для протона и 1,00867 а. е. м. для нейтрона.
Дефект массы является следствием универсального соотношения E = Mc^2, вытекающего из теории относительности А. Эйнштейна, где E - полная энергия системы, c = 3.1010 см/сек - скорость света в пустоте, M - масса системы (в нашем случае - атома) . Тогда DM = DЕ/c2, где DM - дефект массы, а DE - энергия связи нуклонов в ядре, т. е. энергия, которую необходимо затратить для разделения ядра атома на отдельные протоны и нейтроны. Таким образом, чем больше дефект массы, тем больше энергия связывания нуклонов в ядре и тем устойчивее ядро атома элемента. С увеличением числа протонов в ядре (и массового числа) дефект массы сначала возрастает от нуля (для 1H) до максимума (у 64Ni), а затем постепенно убывает для более тяжелых элементов.
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?
Если "разобрать" ядро атома на отдельные протоны и нейтроны (например, с ядерной реакции) , то их масса вновь примет именно те значения, которые нам уже известны: 1,00728 а. е. м. для протона и 1,00867 а. е. м. для нейтрона.
Дефект массы является следствием универсального соотношения
E = Mc^2,
вытекающего из теории относительности А. Эйнштейна, где E - полная энергия системы, c = 3.1010 см/сек - скорость света в пустоте, M - масса системы (в нашем случае - атома) . Тогда DM = DЕ/c2, где DM - дефект массы, а DE - энергия связи нуклонов в ядре, т. е. энергия, которую необходимо затратить для разделения ядра атома на отдельные протоны и нейтроны. Таким образом, чем больше дефект массы, тем больше энергия связывания нуклонов в ядре и тем устойчивее ядро атома элемента. С увеличением числа протонов в ядре (и массового числа) дефект массы сначала возрастает от нуля (для 1H) до максимума (у 64Ni), а затем постепенно убывает для более тяжелых элементов.
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?