Работа заданной силы равна работе ее продольной составляющей, т. е. А =F*s*cos (alpha), (1) где F - сила, действующая на автомобиль (Дж) , s - пройденный путь (s = 100 м) , alpha - угол между направлением силы тяжести и поверхностью дороги, численно равный разнице 90 град - (минус) угол между поверхностью дороги и горизонтом, т. е. ( 90-4 = 86 град) F = m*g, (2) где m - масса автомобиля (m=10 т =10000 кг) g - ускорение свободного падения (g = 9,81 м/с) Подставляем значения в формулы (2) и (1) и имеем: F = m*g = 10000*9,81 = 98100 (Н) A = F*s*cos(alpha) = 98100*100*cos(86 град) = 9810000*0,069756= 684306,36 (Дж) = 68,43 (кДж) Удачи!
Из формулы потенциальной энергии видно, что нулевой уровень её будет только в одной точке с координатами (0;0;0). чем дальше частица от этой точки, тем выше её потенциальная энергия. ещё одно замечание связано с тем, что работа силы поля равна разности потенциальных энергий в конце и начале пути. теперь можно подставить значения координат точек и посчитать потенциальную энергию двух этих положений U1=18; U2=18; => работа на данном пути равна нулю. это полно представить так, что вокруг точки (0;0;0) есть области с одинаковыми уровнями энергии, если бы в формуле энергии небыло бы двойки перед х^2 то эта область имела бы форму сферы, а так она будет иметь такую каплевидную фору симметричную относительно оси Ох. эта область как раз будет характеризоваться тем, что работа потенциальной силы в этой области будет равна нулю
А =F*s*cos (alpha), (1)
где F - сила, действующая на автомобиль (Дж) ,
s - пройденный путь (s = 100 м) ,
alpha - угол между направлением силы тяжести и поверхностью дороги, численно равный разнице 90 град - (минус) угол между поверхностью дороги и горизонтом, т. е. ( 90-4 = 86 град)
F = m*g, (2)
где m - масса автомобиля (m=10 т =10000 кг)
g - ускорение свободного падения (g = 9,81 м/с)
Подставляем значения в формулы (2) и (1) и имеем:
F = m*g = 10000*9,81 = 98100 (Н)
A = F*s*cos(alpha) = 98100*100*cos(86 град) = 9810000*0,069756= 684306,36 (Дж) = 68,43 (кДж)
Удачи!