Идущая вверх по реке моторная лодка встретила сплавляемые по течению реки плоты . через час после встречи лодочный мотор заглох . ремонт мотора продолжался 30 мин. в течение этого времени лодка свободно плыла вниз по течению. после ремонта лодка поплыла вниз по течению с прежней относительно воды скоростью и нагнала плоты на расстоянии s=7.5 км от места их первой встречи . определить скорость течения реки,считая ее постоянной
Когда мотор заглох, в течение 0,5 часа и лодка, и плоты двигаются по течению реки и расстояние между ними не меняется.
После ремонта лодка возвращается и до встречи с плотами так же проходит 1 час
Это происходит потому, что при движении лодки от плотов скорость удаления равна скорости лодки минус скорость течения (лодка идет против течения) плюс скорость течения, с которой удаляются от лодки плоты. Итого: скорость удаления лодки от плотов равна скорости лодки в стоячей воде.
S = t₁ (v₁ - v₂ + v₂) = t₁v₁, где t₁ = 1 час - время удаления лодки,
v₁ - скорость лодки, v₂ - скорость течения
При движении после ремонта скорость сближения лодки с плотами равна скорости лодки плюс скорость течения (лодка идет по течению) минус скорость течения, с которой плоты удаляются от догоняющей их лодки. Итого: скорость сближения лодки с плотами равна скорости лодки в стоячей воде.
S = t₂ (v₁ + v₂ - v₂) = t₂v₁ , где t₂ - время сближения лодки,
v₁ - скорость лодки, v₂ - скорость течения
Так как расстояние с тех пор, как мотор заглох до его запуска между лодкой и плотами не изменилось (они все двигались по течению), значит на то, чтобы преодолеть то же расстояние, что и после первой их встречи и догнать плоты лодке потребуется тот же час.
t₁v₁ = t₂v₁ => t₁ = t₂ = 1 час
Так как лодка догнала плоты на расстоянии S=7,5 км от места их первой встречи и время, затраченное на это
t = 1 ч + 0,5 ч + 1 ч = 2,5 ч
То скорость течения реки v = S/t = 7,5/2,5 = 3 (км/ч)