Почему струя расплавленного металла сужается, когда через него пропускают ток?
Магнитное поле действительно "виновато", но не так, как думают многие.
Когда пропускают ток, соседние капельки заряжаются одинаково и отталкиваются друг от друга. Но это не единственное следствие. представьте себе, что струя металла - это множество проводников, по которым текут сонаправленные токи. Так вот, силы Ампера (взаимодействие магнитных полей этих проводников) заставляет их стянуться друг к другу. И эти силы значительно превышают электростатические силы отталкивания.
Вспоминаем закон всемирного тяготения. Два тела притягиваются друг к другу с силой: F = G*m1*m2/r^2, где G - гравитационная постоянная, m1,m2 - массы тел, r - расстояние между ними. В случае с телом на поверхности одна масса будет массой тела, а другая - массой планеты. Для силы тяжести на поверхности земли нам более привычна формула: F = m*g, где m - масса тела на поверхности, а g - ускорение свободного падения. Однако, как мы видим, значение g берётся не из воздуха, а может быть выражено, если в исходной силе тяготения всё, кроме массы тела, заменить: g = G*m1/r^2 Пусть это будет выражение для Земли, а для этой некоторой планеты масса будет mx, радиус rx, ускорение свободного падения gx. Тогда выражение примет вид: gx = G*mx/rx^2 Про соотношение радиусов мы знаем (rx = r/2), а вот соотношение масс придётся рассчитать. Раз плотности одинаковы, соотношение масс будет определяться соотношением объёмов, а оно, в свою очередь - соотношением радиусов (считаем, что планеты у нас шарообразны). Вспоминаем формулу объёма шара через радиус: V = 4/3 *П * r^3 Таким образом, если V - это объём Земли, то объём некоторой планеты Vx: Vx = 4/3 * П * rx^3 = 4/3 * П * (r/2)^3 = 4/3 * П * r^3/8 = V/8 Объём планеты в восемь раз меньше объёма Земли, значит и масса в восемь раз меньше: mx = m1/8 Подставляем известное нам в выражение для gx: gx = G*mx/rx^2 = G*(m1/8)/(r/2)^2 = G*m1*4/(8*r^2) = G*m1 / (2*r^2) = g/2 Таким образом, при уменьшении радиуса вдвое ускорение свободного падения уменьшится тоже вдвое.
Почему струя расплавленного металла сужается, когда через него пропускают ток?
Магнитное поле действительно "виновато", но не так, как думают многие.
Когда пропускают ток, соседние капельки заряжаются одинаково и отталкиваются друг от друга. Но это не единственное следствие. представьте себе, что струя металла - это множество проводников, по которым текут сонаправленные токи. Так вот, силы Ампера (взаимодействие магнитных полей этих проводников) заставляет их стянуться друг к другу. И эти силы значительно превышают электростатические силы отталкивания.
F = G*m1*m2/r^2, где G - гравитационная постоянная, m1,m2 - массы тел, r - расстояние между ними. В случае с телом на поверхности одна масса будет массой тела, а другая - массой планеты.
Для силы тяжести на поверхности земли нам более привычна формула:
F = m*g, где m - масса тела на поверхности, а g - ускорение свободного падения. Однако, как мы видим, значение g берётся не из воздуха, а может быть выражено, если в исходной силе тяготения всё, кроме массы тела, заменить:
g = G*m1/r^2
Пусть это будет выражение для Земли, а для этой некоторой планеты масса будет mx, радиус rx, ускорение свободного падения gx. Тогда выражение примет вид:
gx = G*mx/rx^2
Про соотношение радиусов мы знаем (rx = r/2), а вот соотношение масс придётся рассчитать. Раз плотности одинаковы, соотношение масс будет определяться соотношением объёмов, а оно, в свою очередь - соотношением радиусов (считаем, что планеты у нас шарообразны). Вспоминаем формулу объёма шара через радиус:
V = 4/3 *П * r^3
Таким образом, если V - это объём Земли, то объём некоторой планеты Vx:
Vx = 4/3 * П * rx^3 = 4/3 * П * (r/2)^3 = 4/3 * П * r^3/8 = V/8
Объём планеты в восемь раз меньше объёма Земли, значит и масса в восемь раз меньше:
mx = m1/8
Подставляем известное нам в выражение для gx:
gx = G*mx/rx^2 = G*(m1/8)/(r/2)^2 = G*m1*4/(8*r^2) = G*m1 / (2*r^2) = g/2
Таким образом, при уменьшении радиуса вдвое ускорение свободного падения уменьшится тоже вдвое.