Используя формулу S = vt и C=an найдите неизвестную величину: 23 70 V (км/ч) 27 60 а(тг) 9 3 4 t (ч) 6 280 520 420 480 S (км) С(тг) Используя формулы P=2(a+b) и S = ab, найдите неизвестную величину : а (м) 5 а (м) 4 5 94 3 b (M) 4 b (м) 3 14 92 840 720 S (м2) 96 P(м)
См. рисунок. Возможных вариантов - два: когда силу прикладывают, чтобы двинуть брусок вверх, и когда - вниз.
Для того, чтобы брусок вообще сдвинулся (неважно куда - вверх или вниз), нужно чтобы сила трения покоя, действующая на брусок, имела максимальное значение. Как известно, максимальная сила трения покоя равна:
Fтр.п._max = μN
Когда брусок сдвинут, на него будет действовать сила трения скольжения. Её тоже вычисляют по этой формуле:
Fтр.ск. = μN
На самом деле максимальная сила трения покоя чуть больше, чем сила трения скольжения. Но приближённо две эти силы можно считать равными.
Чтобы вычислить минимальную силу F, нужно рассмотреть все силы, которые действуют на брусок. Распишем по Второму закону Ньютона проекции этих сил:
Ве́кторная величина́ — физическая величина, являющаяся вектором (тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря — тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
В большинстве случаев термин вектор употребляется в физике для обозначения вектора в так называемом «физическом пространстве», то есть в обычном трёхмерном пространстве классической физики или в четырёхмерном[1] пространстве-времени в современной физике (в последнем случае понятие вектора и векторной величины совпадают с понятием 4-вектора и 4-векторной величины).
Употребление словосочетания «векторная величина» практически исчерпывается этим. Что же касается употребления термина «вектор», то оно, несмотря на тяготение по умолчанию к этому же полю применимости, в большом количестве случаев всё же весьма далеко выходит за такие рамки. Об этом см. ниже.
Дано:
α = 30°
m = 1 кг
μ = 0,8
g = 10 Н/кг
F - ?
См. рисунок. Возможных вариантов - два: когда силу прикладывают, чтобы двинуть брусок вверх, и когда - вниз.
Для того, чтобы брусок вообще сдвинулся (неважно куда - вверх или вниз), нужно чтобы сила трения покоя, действующая на брусок, имела максимальное значение. Как известно, максимальная сила трения покоя равна:
Fтр.п._max = μN
Когда брусок сдвинут, на него будет действовать сила трения скольжения. Её тоже вычисляют по этой формуле:
Fтр.ск. = μN
На самом деле максимальная сила трения покоя чуть больше, чем сила трения скольжения. Но приближённо две эти силы можно считать равными.
Чтобы вычислить минимальную силу F, нужно рассмотреть все силы, которые действуют на брусок. Распишем по Второму закону Ньютона проекции этих сил:
ВНИЗ.
OY: N + F*sinα - mg*cosα = 0
N = mg*cosα - F*sinα
OX: F*cosα + mg*sinα - Fтр.п._max = 0
F*cosα + mg*sinα - μN = 0
F*cosα + mg*sinα = μN
F*cosα + mg*sinα = μ*(mg*cosα - F*sinα)
F*cosα + mg*sinα = μ*mg*cosα - μ*F*sinα
F*cosα + μ*F*sinα = μ*mg*cosα - mg*sinα
F*(cosα + μ*sinα) = mg*(μ*cosα - sinα)
F = mg*(μ*cosα - sinα) / (cosα + μ*sinα) = 1*10*(0,8*cos30° - sin30°) / (cos30° + 0,8*sin30°) = 10*(0,8*√3/2 - 0,5) / (√3/2 + 0,8*0,5) = 1,52... = 1,5 Н
ВВЕРХ.
OY: N - F*sinα - mg*cosα = 0
N = mg*cosα + F*sinα
OX: mg*sinα + Fтр.п._max - F*cosα = 0
mg*sinα + μN - F*cosα = 0
mg*sinα + μN = F*cosα
F*cosα = mg*sinα + μ*(mg*cosα + F*sinα)
F*cosα = mg*sinα + μ*mg*cosα + μ*F*sinα
F*cosα - μ*F*sinα = mg*sinα + μ*mg*cosα
F*(cosα - μ*sinα) = mg*(sinα + μ*cosα)
F = mg*(sinα + μ*cosα) / (cosα - μ*sinα) = 1*10*(sin30° + 0,8*cos30°) / (cos30° - 0,8*sin30°) = 10*(0,5 + 0,8*√3/2) / (√3/2 - 0,8*0,5) = 25,5956... = 25,6 Н
ответ: 1,5 Н и 25,6 Н.
Ве́кторная величина́ — физическая величина, являющаяся вектором (тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря — тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
В большинстве случаев термин вектор употребляется в физике для обозначения вектора в так называемом «физическом пространстве», то есть в обычном трёхмерном пространстве классической физики или в четырёхмерном[1] пространстве-времени в современной физике (в последнем случае понятие вектора и векторной величины совпадают с понятием 4-вектора и 4-векторной величины).
Употребление словосочетания «векторная величина» практически исчерпывается этим. Что же касается употребления термина «вектор», то оно, несмотря на тяготение по умолчанию к этому же полю применимости, в большом количестве случаев всё же весьма далеко выходит за такие рамки. Об этом см. ниже.
Объяснение:
ПУСИ ДЖУСИ НА ТУСЕ.САМКА КРУТАЯЯ