Изменяется ли и, если да, то, как зарядовое число ядра при испускании им бета-частицы?
1)
не изменяется
2)
уменьшается на единицу
3)
уменьшается на 2
4)
увеличивается на единицу
При электронном β-распаде ядра его массовое число
1)
уменьшается на 1 единицу
2)
уменьшается на 2 единицы
3)
уменьшается на 4 единицы
4)
не изменяется
При α-распаде атомного ядра его массовое число
1)
уменьшается на 2 единицы
2)
уменьшается на 4 единицы
3)
увеличивается на 2 единицы
4)
увеличивается на 4 единицы
При электронном β-распаде ядра его зарядовое число
1)
увеличивается на 1 единицу
2)
увеличивается на 2 единицы
3)
уменьшается на 1 единицу
4)
уменьшается на 2 единицы
При испускании γ-кванта
1)
массовое и зарядовое числа ядра не изменяются
2)
массовое и зарядовое числа ядра увеличиваются
3)
массовое число ядра не изменяется, зарядовое число ядра увеличивается
4)
массовое число ядра увеличивается, зарядовое число ядра не изменяется
При исследовании естественной радиоактивности были обнаружены три вида излучений: альфа-
излучение (поток альфа-частиц), бета-излучение (поток бета-частиц) и гамма-излучение. Каково
массовое число альфа-частиц?
1) 4
2) 2
3) 1
4) 0
Резона́нс (від лат. resono «відгук, відгукуюсь») — явище, що гається в різного типу фізичних системах, які знаходяться під дією зовнішніх, змінних у часі (періодичних) збурень. Під дією таких збурень, у системах виникають коливання, які називають вимушеними. Найчастіше резонанс визначають як зростання амплітуди вимушених коливань в системі при збігу частоти зовнішньої сили з однією із власних частот коливальної системи. Однак, в багатьох випадках це не так. Для виникнення резонансу в системах з багатьма степенями свободи резонанс проявляється лише при певних умовах узгодження в просторі і часі характеристик зовнішніх збурень і внутрішніх властивостей системи. Зовнішні сили мають мати складові, що здатні збуджувати відповідні власні форми коливань.Явище резонансу було вперше описано Галілео Галілеєм у 1638 році: "можна привести в рух важкий нерухомий маятник, просто дмухаючи на нього, і повторюючи ці видихи з тією частотою, яка притаманна рухові самого маятника".і[1]. В описі резонансу Г. Галілей якраз звернув увагу на найсуттєвіше — на здатність механічної коливальної системи (важкого маятника) накопичувати енергію, що підводиться від зовнішнього джерела з певною частотою. Прояви резонансу мають певні специфічні особливості в різних системах і тому розрізняють різні його типи:
механічний резонанс,
акустичний резонанс,
електромагнітний резонанс,
ядерний магнітний резонанс,
електронний спіновий резонанс,
електронний парамагнітний резонанс,
параметричний резонанс.
Основні властивості резонансних явищ найпростіше ілюструються при аналізі механічного резонансу в системах з різними властивостями.
Зміст
1 Резонанси в механічних коливальнних системах з одним ступенем вільності
1.1 Резонанс в лінійній системі без демпфування
1.2 Резонанс в лінійній системі з демпфуванням
1.3 Резонанс в електричному колі
1.4 Резонанс в нелінійній системі
2 Резонанси в системах з розподіленими параметрами (з нескінченним числом ступенів вільності)
3 Застосування
4 Див. також
5 Примітки
6 Література
Резонанси в механічних коливальнних системах з одним ступенем вільності
Система з одним ступенем вільності є найпростішою механічною системою, аналіз поведінки якої при вимушених коливаннях під дією періодичної зовнішньої сили дає можливість висвітлити багато особливостей явища резонансу.
Найпростіша модель системи з одним ступенем вільності.
В показаній на рисунку системі маса {\displaystyle m}m прикріплена до невагомої пружини з жорсткістю {\displaystyle D}{\displaystyle D}. Будучи зміщенною в початковий мо
Объяснение:
Формула кинетической энергии:
E=\frac{mv^2}{2}E=2mv2
В высшей точке траектории пуля имеет скорость, равную проекции начальной скорости на ось OX (без учета сопротивления воздуха). Эта проекция скорости постоянна в любом моменте времени.
Поэтому можно записать следующее:
\frac{m(v\cos \alpha)^2}{2} = E_k2m(vcosα)2=Ek
Подставим необходимые значения, предварительно переведя их в СИ,и проведем расчет:
\begin{gathered}\frac{0.01(600\cos \alpha)^2}{2} = 450 \\ 0.01(600\cos \alpha)^2=900 \\ 60\cos \alpha = 30 \\ \cos \alpha = \frac{1}{2} =\ \textgreater \ \alpha = 60^0\end{gathered}20.01(600cosα)2=4500.01(600cosα)2=90060cosα=30cosα=21= \textgreater α=600
Таким образом, пулю пустили под углом к горизонту в 60 градусов.
ответ: 60 градусов