Альпинист массой m = 80 кг спускается с отвесной скалы, скользя по вертикальной веревке с ускорением a = 0,4 м/с2, направленным вниз. Пренебрегая массой веревки, определите силу T ее натяжения.
Решение
Согласно третьему закону Ньютона альпинист действует на веревку с такой же по модулю силой, с какой веревка действует на альпиниста. На альпиниста действуют две силы: сила тяжести  направленная вертикально вниз, и упругая сила  веревки, направленная вверх. По второму закону Ньютона
ma = mg – T.
Следовательно, сила натяжения веревки T равна
T = m(g – a) = 752 Н.
Если бы альпинист спускался по веревке с постоянной скоростью или неподвижно висел на ней, то сила T' натяжения была бы равна
A = e·Δφ = 1,6·10⁻¹⁹·1000 = 1,6·10⁻¹⁶ Дж (1)
2)
Эта работа равна кинетической энергии протона:
Ek = m·V²/2 = 1,67·10⁻²⁷ · V² /2 ≈ 0,84·10⁻²⁷·V² (2)
3)
Приравняем (2) и (1)
0,84·10⁻²⁷·V² = 1,6·10⁻¹⁶
V² = 1,6·10⁻¹⁶ / 0,84·10⁻²⁷·V² ≈ 1,9·10¹¹
V = √ (1,9·10¹¹) ≈ 0,44·10⁶ м/с
4)
Сила Лоренца, действующая на протон в магнитном поле является и центростремительной силой:
q·B·V = m·V²/R
Радиус:
R = m·V / (q·B) = 1,67·10⁻²⁷·0,44·10⁶ / (1,6·10⁻¹⁶·0,2) ≈ 23·10 ⁻⁶ м
Период:
T = 2π·R/V = 2·3,14·23·10⁻⁶ / 0,44·10⁶ ≈ 3,3·10⁻¹⁰ c
Объяснение:
Альпинист массой m = 80 кг спускается с отвесной скалы, скользя по вертикальной веревке с ускорением a = 0,4 м/с2, направленным вниз. Пренебрегая массой веревки, определите силу T ее натяжения.
Решение
Согласно третьему закону Ньютона альпинист действует на веревку с такой же по модулю силой, с какой веревка действует на альпиниста. На альпиниста действуют две силы: сила тяжести  направленная вертикально вниз, и упругая сила  веревки, направленная вверх. По второму закону Ньютона
ma = mg – T.
Следовательно, сила натяжения веревки T равна
T = m(g – a) = 752 Н.
Если бы альпинист спускался по веревке с постоянной скоростью или неподвижно висел на ней, то сила T' натяжения была бы равна
T' = mg = 784 Н.