Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.
Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).
Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).
Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.
Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:
xп = 0 + 1 · t, xв = 20 - 3 · t.
Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты
Объяснение:
Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = xв. (3) (условие встречи пешехода и велосипедиста)
Шаг 7 (аналитический). Решение уравнений.
Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):
0 + 1 · t = 20 - 3 · t
Приведем подобные слагаемые и решим уравнение:
(1+3) · t = 20, t = 20/4 = 5 (с).
Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.
Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):
xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).
Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.
Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):
xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).
Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.
Итоги
При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде
Дано: m (масса алюминиевого бруска) = 540 г (0,54 кг); брусок погружен в воду на 1/2 объема.
Постоянные: g (ускорение свободного падения) ≈ 10 м/с2; ρв (плотность воды, в которую погружен брусок) = 1000 кг/м3; ρа (плотность алюминия) = 2700 кг/м3.
Искомую архимедову силу, действующую на взятый алюминиевый брусок, определим по формуле: Fa = ρв * g * Vв = ρв * g * V / 2 = ρв * g * m / 2ρа.
Расчет: Fa = 1000 * 10 * 0,54 / (2 * 2700) = 1 Н.
ответ: На взятый брусок действует выталкивающая сила в 1 Н.
это 30.23
Плотность стекла=2500кг. /м (в кубе) Найдем обьем ст вазы V=m/плотность=2./1000м (в кубе) СИЛА АРХИМЕДА=ВЕСУ ЖИДКОСТИ в обьеме ст вазы=1000*10*2,/1000=20H Вес Вазы=mg=5*10=50H МЫ ДОЛЖНЫ ПРИЛОЖИТЬ F=50-20=30H
это 30.24
Сила, которая необходима для поднятия на борт судна
Сначала найдём массу гранитной плиты
m = ро*V
ро - плотность
ро (гранита) = 2600 кг/м^3 (если мэйл не врёт)
V = abc = 3 м * 1 м * 0.5 м = 1.5 м^3
Теперь можем смело находить массу
m = 2600 кг/м^3 * 1.5 м^3 = 3900 кг
F = P = mg = 3900 кг * 10 Н/кг = 39000 Н = 39 кН
ответ: Для поднятия гранитной плиты на борт судна необходимо приложить силу 39 кН
2. Сила, которая нужна, чтоб поднять её со дна реки до поверхности воды.
Найдём архимедовую силу
F (арх) = ро (ж) * gV
V - объём вытесненной воды. Равен объёму части, погруженной в воду. В данном случае V вытесненной воды = V плиты
ро (ж) - плотность жидкости, в данном случае воды
Из первого пункта нам известно, что V плиты = 1.5 м^3
ро (воды) = 1000 кг/м^3
Теперь можем найти архимедовую силу
F (арх) = 1000 кг/м^3 * 10 H/кг * 1.5 м = 15000 H = 15 кН
Из первого пункта нам известно, что P гранитной плиты = F = 39000 H
Для расчёта необходимой силы нужно
P (плиты) - F (арх) = 39000 H - 15000 H = 24000 H = 24 кН
ответ: Для поднятия плиты со дна до поверхности воды необходимо приложить силу 24000 Н = 24 кН
это 30.25
Динамометр показывает разницу между силой притяжения, направленной вниз и выталкивающей силой Архимеда, которая направлена вверх и равна весу вытесненной жидкости. Обозначим: F – показания динамометра, P – вес тела, Fa – сила Архимеда.
Тогда F = P – Fa.
В полученом равенстве запишем Fa через ускорение свободного падения g, плотность воды r, и объем V:
F = P - grV.
Когда тело вытащат из воды, динамометр будет показывать вес тела.
P = F + grV.
Перепишем уравнение, выразив объем в метрах кубических, а также учитывая, что g = 9,8 м/с2, r = 1000 кг/м3,
V =0,00015 м3.
P=3 H + 9,8 м/ с2 * 1000 кг/м3 * V=0,00015 м3 = 3 H + 1,47 Н = 4,47 Н.
ответ: 4,47 Н.
это 30.26
m = 17 кг.
g = 10 м/с2.
ρл = 8500 кг/м3.
ρв = 1000 кг/м3.
F - ?
На любое тело, в том числе и латунный стержень, в жидкости, кроме силы тяжести m * g, действует выталкивающая сила Архимеда Fарх, направленная вертикально вверх. Поэтому результирующая этих сил и будет силой F, с которой необходимо его удерживать под водой.
Так как силы направленные противоположено, то F = m * g - Fарх.
Силу Архимеда Fарх выразим формулой: Fарх = V * ρв * g.
Объем стержня V выразим формулой: V = m / ρл, где ρл - плотность латуни, возьмём из таблицы плотности веществ.
Fарх = m * ρв * g / ρл.
F = m * g - m * ρв * g / ρл = m * g * (1 - ρв / ρл).
F = 17 кг * 10 м/с2 * (1 - 1000 кг/м3/ 8500 кг/м3) = 150 Н.
ответ: для удержания латунного стержня под водой необходимо приложить вертикально вверх силу F = 150 Н.
Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.
Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).
Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).
Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.
Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:
xп = 0 + 1 · t, xв = 20 - 3 · t.
Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты
Объяснение:
Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = 0 + 1 · t, (1) (закон движения пешехода)
xв = 20 - 3 · t, (2) (закон движения велосипедиста)
xп = xв. (3) (условие встречи пешехода и велосипедиста)
Шаг 7 (аналитический). Решение уравнений.
Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):
0 + 1 · t = 20 - 3 · t
Приведем подобные слагаемые и решим уравнение:
(1+3) · t = 20, t = 20/4 = 5 (с).
Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.
Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):
xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).
Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.
Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):
xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).
Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.
Итоги
При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде
это 30, 21.
это 30.22
Дано: m (масса алюминиевого бруска) = 540 г (0,54 кг); брусок погружен в воду на 1/2 объема.
Постоянные: g (ускорение свободного падения) ≈ 10 м/с2; ρв (плотность воды, в которую погружен брусок) = 1000 кг/м3; ρа (плотность алюминия) = 2700 кг/м3.
Искомую архимедову силу, действующую на взятый алюминиевый брусок, определим по формуле: Fa = ρв * g * Vв = ρв * g * V / 2 = ρв * g * m / 2ρа.
Расчет: Fa = 1000 * 10 * 0,54 / (2 * 2700) = 1 Н.
ответ: На взятый брусок действует выталкивающая сила в 1 Н.
это 30.23
Плотность стекла=2500кг. /м (в кубе) Найдем обьем ст вазы V=m/плотность=2./1000м (в кубе) СИЛА АРХИМЕДА=ВЕСУ ЖИДКОСТИ в обьеме ст вазы=1000*10*2,/1000=20H Вес Вазы=mg=5*10=50H МЫ ДОЛЖНЫ ПРИЛОЖИТЬ F=50-20=30H
это 30.24
Сила, которая необходима для поднятия на борт судна
Сначала найдём массу гранитной плиты
m = ро*V
ро - плотность
ро (гранита) = 2600 кг/м^3 (если мэйл не врёт)
V = abc = 3 м * 1 м * 0.5 м = 1.5 м^3
Теперь можем смело находить массу
m = 2600 кг/м^3 * 1.5 м^3 = 3900 кг
F = P = mg = 3900 кг * 10 Н/кг = 39000 Н = 39 кН
ответ: Для поднятия гранитной плиты на борт судна необходимо приложить силу 39 кН
2. Сила, которая нужна, чтоб поднять её со дна реки до поверхности воды.
Найдём архимедовую силу
F (арх) = ро (ж) * gV
V - объём вытесненной воды. Равен объёму части, погруженной в воду. В данном случае V вытесненной воды = V плиты
ро (ж) - плотность жидкости, в данном случае воды
Из первого пункта нам известно, что V плиты = 1.5 м^3
ро (воды) = 1000 кг/м^3
Теперь можем найти архимедовую силу
F (арх) = 1000 кг/м^3 * 10 H/кг * 1.5 м = 15000 H = 15 кН
Из первого пункта нам известно, что P гранитной плиты = F = 39000 H
Для расчёта необходимой силы нужно
P (плиты) - F (арх) = 39000 H - 15000 H = 24000 H = 24 кН
ответ: Для поднятия плиты со дна до поверхности воды необходимо приложить силу 24000 Н = 24 кН
это 30.25
Динамометр показывает разницу между силой притяжения, направленной вниз и выталкивающей силой Архимеда, которая направлена вверх и равна весу вытесненной жидкости. Обозначим: F – показания динамометра, P – вес тела, Fa – сила Архимеда.
Тогда F = P – Fa.
В полученом равенстве запишем Fa через ускорение свободного падения g, плотность воды r, и объем V:
F = P - grV.
Когда тело вытащат из воды, динамометр будет показывать вес тела.
P = F + grV.
Перепишем уравнение, выразив объем в метрах кубических, а также учитывая, что g = 9,8 м/с2, r = 1000 кг/м3,
V =0,00015 м3.
P=3 H + 9,8 м/ с2 * 1000 кг/м3 * V=0,00015 м3 = 3 H + 1,47 Н = 4,47 Н.
ответ: 4,47 Н.
это 30.26
m = 17 кг.
g = 10 м/с2.
ρл = 8500 кг/м3.
ρв = 1000 кг/м3.
F - ?
На любое тело, в том числе и латунный стержень, в жидкости, кроме силы тяжести m * g, действует выталкивающая сила Архимеда Fарх, направленная вертикально вверх. Поэтому результирующая этих сил и будет силой F, с которой необходимо его удерживать под водой.
Так как силы направленные противоположено, то F = m * g - Fарх.
Силу Архимеда Fарх выразим формулой: Fарх = V * ρв * g.
Объем стержня V выразим формулой: V = m / ρл, где ρл - плотность латуни, возьмём из таблицы плотности веществ.
Fарх = m * ρв * g / ρл.
F = m * g - m * ρв * g / ρл = m * g * (1 - ρв / ρл).
F = 17 кг * 10 м/с2 * (1 - 1000 кг/м3/ 8500 кг/м3) = 150 Н.
ответ: для удержания латунного стержня под водой необходимо приложить вертикально вверх силу F = 150 Н.
это 30.27
Дано: m=1,4 кг ; ρк=800 кг/м³ ; ρч =7000 кг/м³ ; g=10 Н/кг
Найти: Fa
Решение. Fa= ρж *g *Vп.ч., где входит Найдём сначала объём всего чугунного шара:
V=m/ρ, V=1,4/7000=0,0002 м³. Но объём погружённой части равен половине всего объёма, то есть Vп.ч.=V/2= 0,0002/2=0,0001 м³.
Итак ,Fa=800*10*0,0001=0,8 Н
ответ: 0,8Н
это 30.28
F=ρ(жидкости)gV(тела)
V1(погруженной части бруска)=F/ρg=2,5/10000=0,00025 м в кубе
Теперь найдем объем бруска.
V2=m/ρ, ρ=2700кг/м в кубе
V2=2,7/2700=0,001 м в кубе
Чтобы найти, какая часть бруска погружена в воду, берем отношение объема погруженной в воду части к полному объему
V1/V2=0,00025/0,001=0,25 или 1/4 часть бруска.