Как меняется потенциальная энергия тела, если тело массой 2 кг опустили на 10 м? а)уменьшится 200джб)уменьшится 800джв)увеличится 200джг)увеличится 800дж
В данной статье рассказано о том, как найти среднюю скорость. Дано определение этого понятия, а также рассмотрено два важных частных случая нахождения средней скорости. Представлен подробный разбор задач на нахождение средней скорости тела от репетитора по математике и физике.
Определение средней скорости
Средней скоростью движения \upsilon_{cp} тела называется отношение пути s, пройденного телом, ко времени t, в течение которого двигалось тело:
\[ \upsilon_{cp} = \frac{s}{t}. \]
Научимся ее находить на примере следующей задачи:
Тело двигалось 3 мин. со скоростью 5 м/с, после чего 7 мин. двигалось со скоростью 3 м/с. Найти среднюю скорость движения тела.
Переведем все величины в Международную систему единиц СИ. В этой системе единицей измерения времени является секунда. Следовательно, тело двигалось на первом участке пути в течение t_1 = 3\cdot 60 = 180 с, а на втором участке пути в течение t_2 = 7\cdot 60 = 420 с.
Найдем теперь полный путь, пройденный телом. На первом участке тело м пути. На втором участке пути тело м пути. Следовательно, общий пройденный телом путь составляет s = s_1 + s_2 = 2160 м.
Общее время движения составляет t = t_1+t_2 = 600 с. Следовательно, средняя скорость движения тела составляет:
\upsilon_{cp} = \frac{s}{t} = 3.6 м/с.
Обратите внимание, что в данном случае это значение не совпало со средним арифметическим скоростей \upsilon_1 и \upsilon_2, которое равно:
\frac{\upsilon_1+\upsilon_1}{2} = 4 м/с.
Частные случаи нахождения средней скорости
1. Два одинаковых участка пути. Пусть первую половину пути тело двигалось со скоростью \upsilon_1, а вторую половину пути — со скоростью \upsilon_2. Требуется найти среднюю скорость движения тела.
Пусть s — общая длина пройденного пути. Тогда на первом участке пути тело двигалось в течение интервала времени t_1 = \frac{s}{2\upsilon_1}. Аналогично, на втором участке пути тело двигалось в течение интервала времени t_2 = \frac{s}{2\upsilon_2}.
2. Два одинаковых интервала движения. Пусть тело двигалось со скоростью \upsilon_1 в течение некоторого промежутка времени, а затем стало двигаться со скоростью \upsilon_2 в течение такого же промежутка времени. Требуется найти среднюю скорость движения тела.
Пусть t — общее время пути. Тогда путь, пройденный телом в течение первой половины времени движения, равен: s_1 = \upsilon_1\frac{t}{2}. Аналогично, путь, пройденный телом в течение второй половины времени движения, равен: s_2 = \upsilon_2\frac{t}{2}.
Здесь мы получили единственный случай, когда средняя скорость движения совпала со средним арифметическим скоростей \upsilon_1 и \upsilon_2 на двух участках пути.
Решим напоследок задачу из Всероссийской олимпиады школьников по физике в году, которая связана с темой нашего сегодняшнего занятия.
Тело двигалось t = 20 с, и средняя скорость движения \upsilon_{cp} составила 4 м/с. Известно, что за последние t_2 = 4 с движения средняя скорость этого же тела \upsilon_{cp2} составила 10 м/с. Определите среднюю скорость тела \upsilon_{cp1} за первые t_1 = 16 с движения.
Пройденный телом путь составляет: s = \upsilon_{cp}t = 80 м. Можно найти также путь, который тело за последние t_2 = 4 с своего движения: s_2 = \upsilon_{cp2}t_2 = 40 м. Тогда за первые t_1 = 16 с своего движения тело преодолело путь в s_1 = s-s_2 = 40 м. Следовательно, средняя скорость на этом участке пути составила:
Из графиков приведенных на рисунке, только график под номером 3 является графиком изохорического процесса в идеальном газе, поскольку на диаграмме в осях p-T график изохоры должен идти примерно из начала координат
1 график не подходит поскольку идет не из центра координат
2 график не подходит поскольку график изохоры в данных осях является линейной функцией а не параболической
4 график не подходит поскольку это изобарный процесс с постоянным давлением
5 график не подходит поскольку является изотермическим процессом с постоянной температурой
В данной статье рассказано о том, как найти среднюю скорость. Дано определение этого понятия, а также рассмотрено два важных частных случая нахождения средней скорости. Представлен подробный разбор задач на нахождение средней скорости тела от репетитора по математике и физике.
Определение средней скорости
Средней скоростью движения \upsilon_{cp} тела называется отношение пути s, пройденного телом, ко времени t, в течение которого двигалось тело:
\[ \upsilon_{cp} = \frac{s}{t}. \]
Научимся ее находить на примере следующей задачи:
Тело двигалось 3 мин. со скоростью 5 м/с, после чего 7 мин. двигалось со скоростью 3 м/с. Найти среднюю скорость движения тела.
Переведем все величины в Международную систему единиц СИ. В этой системе единицей измерения времени является секунда. Следовательно, тело двигалось на первом участке пути в течение t_1 = 3\cdot 60 = 180 с, а на втором участке пути в течение t_2 = 7\cdot 60 = 420 с.
Найдем теперь полный путь, пройденный телом. На первом участке тело м пути. На втором участке пути тело м пути. Следовательно, общий пройденный телом путь составляет s = s_1 + s_2 = 2160 м.
Общее время движения составляет t = t_1+t_2 = 600 с. Следовательно, средняя скорость движения тела составляет:
\upsilon_{cp} = \frac{s}{t} = 3.6 м/с.
Обратите внимание, что в данном случае это значение не совпало со средним арифметическим скоростей \upsilon_1 и \upsilon_2, которое равно:
\frac{\upsilon_1+\upsilon_1}{2} = 4 м/с.
Частные случаи нахождения средней скорости
1. Два одинаковых участка пути. Пусть первую половину пути тело двигалось со скоростью \upsilon_1, а вторую половину пути — со скоростью \upsilon_2. Требуется найти среднюю скорость движения тела.
Пусть s — общая длина пройденного пути. Тогда на первом участке пути тело двигалось в течение интервала времени t_1 = \frac{s}{2\upsilon_1}. Аналогично, на втором участке пути тело двигалось в течение интервала времени t_2 = \frac{s}{2\upsilon_2}.
Тогда средняя скорость движения равна:
\[ \upsilon_{cp} = \frac{s}{t_1+t_2} = \frac{s}{\frac{s}{2\upsilon_1}+\frac{s}{2\upsilon_2}} = \frac{2\upsilon_1\upsilon_2}{\upsilon_1+\upsilon_2}. \]
2. Два одинаковых интервала движения. Пусть тело двигалось со скоростью \upsilon_1 в течение некоторого промежутка времени, а затем стало двигаться со скоростью \upsilon_2 в течение такого же промежутка времени. Требуется найти среднюю скорость движения тела.
Пусть t — общее время пути. Тогда путь, пройденный телом в течение первой половины времени движения, равен: s_1 = \upsilon_1\frac{t}{2}. Аналогично, путь, пройденный телом в течение второй половины времени движения, равен: s_2 = \upsilon_2\frac{t}{2}.
Тогда средняя скорость движения равна:
\[ \upsilon_{cp} = \frac{s_1+s_2}{t} = \frac{\upsilon_1\frac{t}{2}+\upsilon_2\frac{t}{2}}{t} = \frac{\upsilon_1+\upsilon_2}{2}. \]
Здесь мы получили единственный случай, когда средняя скорость движения совпала со средним арифметическим скоростей \upsilon_1 и \upsilon_2 на двух участках пути.
Решим напоследок задачу из Всероссийской олимпиады школьников по физике в году, которая связана с темой нашего сегодняшнего занятия.
Тело двигалось t = 20 с, и средняя скорость движения \upsilon_{cp} составила 4 м/с. Известно, что за последние t_2 = 4 с движения средняя скорость этого же тела \upsilon_{cp2} составила 10 м/с. Определите среднюю скорость тела \upsilon_{cp1} за первые t_1 = 16 с движения.
Пройденный телом путь составляет: s = \upsilon_{cp}t = 80 м. Можно найти также путь, который тело за последние t_2 = 4 с своего движения: s_2 = \upsilon_{cp2}t_2 = 40 м. Тогда за первые t_1 = 16 с своего движения тело преодолело путь в s_1 = s-s_2 = 40 м. Следовательно, средняя скорость на этом участке пути составила:
3 график
Объяснение:
Из графиков приведенных на рисунке, только график под номером 3 является графиком изохорического процесса в идеальном газе, поскольку на диаграмме в осях p-T график изохоры должен идти примерно из начала координат
1 график не подходит поскольку идет не из центра координат
2 график не подходит поскольку график изохоры в данных осях является линейной функцией а не параболической
4 график не подходит поскольку это изобарный процесс с постоянным давлением
5 график не подходит поскольку является изотермическим процессом с постоянной температурой