Какая масса льда взятого при температуре -10 расплавиться, если ему передать такое количество теплоты, которое выделиться во время конденсации 8 кг пара при температуре 100. (λл - 332400Дж/кг, r(пара) - 2300000 Дж/кг, Сл - 2100 Дж/кг с)
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.
Рассмотрим два участка движения тела. Участок 1 - наклонный. Участок 2 - горизонтальный. На участке 1 выберем направление оси х вдоль наклонной поверхности вниз, оси у - перпендикулярно наклонной поверхности вверх. На тело действуют три силы: вес (направлена вертикально вниз, раскладывается на две составляющие по осям х - в полож.направлении и у-в отриц.направлении), норм.реакция опоры (направлена перпендикулярно к накл.поверхности вверх, т.е. в полож.направлении оси у), трения (направлена в отриц.направлении по оси х). Проекция веса тела на ось у полностью уравновешена реакцией опоры, т.е. ускорение вдоль у равно 0. Тогда N=m*g*cos(alfa). ВДоль оси х 2-закон Ньютона выглядит так: m*g*sin(alfa)-μ*N=m*a. Учитывая выражение для реакции опоры, получим: m*g*sin(alfa)-μ*m*g*cos(alfa)=m*a. Сократим на m: g*sin(alfa)-μ*g*cos(alfa)=a. Исходим из того, что тело начало движение из состояние покоя. Тогда скорость в конце наклонного участка 1: V=a*t. Время движения: t=SQRT(2*l/a). L-длина наклонного участка: L=h/sin(alfe). Подставив все это в выражение для скорости , получим: V=SQRT(2*L*g*(sin(alfa)-μ*cos(alfa)). Это скорость в конце участка 1, она же есть начальная скорость на участке 2 (горизонтальном).
На участке 2 тело движется под действием тех же трех сил, только теперь осб х - горизонтальная, у - вертикальная. Таким образом, вес направлен вертикально вниз и его х-составляющая равна 0. По 2 закону нюьтона, учитвая, что вес полностью уравновешен силой реакции опоры, получим: Fтр=μ*N=μ*m*g=m*a2, где a2-ускорение (замедление) на участке 2. Отсюда :а2=μ*g. Движение на этом участке равнозамедленное. Начальная скорость известна, конечная - равна 0: 0=V-a2*t, отсюда: t=V/a2=V/(μ*g). Это время, пройденное телом до остановка на участке 2. Расстояние в случае равнозамедленного движения:L2=V*t-a2*t*t/2=V*V/(μ*g)-μ*g*(V/(μ*g)*(V/(μ*g)/2. Упростив выражение получим: L2=V*V/(2*μ*g). Подставим найденное для участка 1 выражение конечной скорости V: L2=2*L*g*(sin(alfa)-μ*cos(alfa))/(2*μ*g)=L*(sin(alfa)-μ*cos(alfa))/μ=h*(sin(alfa)-μ*cos(alfa))/(μ*sin(alfa)). В конечном преобразовании использовано выражение для длины наклонного пути, полученное при рассмотрении участка 1.
Оба тела движутся равномерно.
х(t)=xo + Vx*t
x1=0 + 11,5 * t
x2=800 - 1 * t
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.
На участке 2 тело движется под действием тех же трех сил, только теперь осб х - горизонтальная, у - вертикальная. Таким образом, вес направлен вертикально вниз и его х-составляющая равна 0. По 2 закону нюьтона, учитвая, что вес полностью уравновешен силой реакции опоры, получим: Fтр=μ*N=μ*m*g=m*a2, где a2-ускорение (замедление) на участке 2. Отсюда :а2=μ*g. Движение на этом участке равнозамедленное. Начальная скорость известна, конечная - равна 0: 0=V-a2*t, отсюда: t=V/a2=V/(μ*g). Это время, пройденное телом до остановка на участке 2. Расстояние в случае равнозамедленного движения:L2=V*t-a2*t*t/2=V*V/(μ*g)-μ*g*(V/(μ*g)*(V/(μ*g)/2. Упростив выражение получим: L2=V*V/(2*μ*g). Подставим найденное для участка 1 выражение конечной скорости V: L2=2*L*g*(sin(alfa)-μ*cos(alfa))/(2*μ*g)=L*(sin(alfa)-μ*cos(alfa))/μ=h*(sin(alfa)-μ*cos(alfa))/(μ*sin(alfa)). В конечном преобразовании использовано выражение для длины наклонного пути, полученное при рассмотрении участка 1.