Конечно, поставленный вопрос не корректен1. Потому, что энергия конденсатора зависит еще и от его заряда, причем во всех случаях прямо пропорционально квадрату заряда. Говорить же об изменении энергии конденсатора при изменении его емкости следует только при других заданных условиях: остается ли постоянным заряд конденсатора, остается ли неизменным напряжение на конденсаторе? Если изменение емкости происходит при неизменном заряде конденсатора (при этом изменяется его напряжение), то для расчета энергии следует использовать формулу W = q2/(2C), которая указывает, что увеличение емкости приводит к уменьшению энергии и, наоборот, уменьшение емкости приводит к увеличению энергии. Если же изменение емкости происходит при постоянном напряжении (например, когда конденсатор подключен к источнику постоянной ЭДС), то для расчета энергии и ее изменения нужно использовать выражение W = CU2/2. В этом случае увеличение емкости приводит к увеличению энергии.
Мне так представляется, что ускорение мела (замедление, если угодно, отрицательное ускорение) в данной задаче постоянно.
Почему так? Сила трения Fтр = N * mu = m * g * mu Ускорение (как учил старина Ньютон) а = F / m. В направлении движения, на мел действует единственная сила - трения, других я из условия не усматриваю.
Следовательно, ускорение а = m * g * mu / m = g * mu = 10 * 0,3 = 3 м/с2
Обычное тело в таких условиях ехало бы путь Х = v^2 / (2a) = 121 / 6 = 20,1666 м, но эх, какая незадача - мел истирается. Ок, так сколько же метров сможет вообще проехать мел до полной аннигиляции при условии заданных цифр?
х = 8 г / 0,5 г/м = 16 м. Жаль, недолог его путь. Но зато мы уже более близки к ответу.
Чисто технически мне проще сначала найти скорость u мела в момент его исчезновения. х = ( v^2 - u^2 ) / (2a) 16 = (121 - u^2) / 6 u^2 = 25 u = 5 м/с - при этой скорости от мела, как от чеширского кота, остаётся лишь наглая глумливая ухмылка, и больше ничего.
Отсюда поищем время от начала движения до сего печального момента: t = (v-u) / a = (11-5) / 3 = 2 c
Ну, может я ошибаюсь, но мне так кажется. Если, конечно, мел не украдут раньше в пути его следования.
Если изменение емкости происходит при неизменном заряде конденсатора (при этом изменяется его напряжение), то для расчета энергии следует использовать формулу W = q2/(2C), которая указывает, что увеличение емкости приводит к уменьшению энергии и, наоборот, уменьшение емкости приводит к увеличению энергии.
Если же изменение емкости происходит при постоянном напряжении (например, когда конденсатор подключен к источнику постоянной ЭДС), то для расчета энергии и ее изменения нужно использовать выражение W = CU2/2. В этом случае увеличение емкости приводит к увеличению энергии.
Мне так представляется, что ускорение мела (замедление, если угодно, отрицательное ускорение) в данной задаче постоянно.
Почему так?
Сила трения Fтр = N * mu = m * g * mu
Ускорение (как учил старина Ньютон) а = F / m.
В направлении движения, на мел действует единственная сила - трения, других я из условия не усматриваю.
Следовательно, ускорение
а = m * g * mu / m = g * mu = 10 * 0,3 = 3 м/с2
Обычное тело в таких условиях ехало бы путь
Х = v^2 / (2a) = 121 / 6 = 20,1666 м, но эх, какая незадача - мел истирается. Ок, так сколько же метров сможет вообще проехать мел до полной аннигиляции при условии заданных цифр?
х = 8 г / 0,5 г/м = 16 м. Жаль, недолог его путь. Но зато мы уже более близки к ответу.
Чисто технически мне проще сначала найти скорость u мела в момент его исчезновения.
х = ( v^2 - u^2 ) / (2a)
16 = (121 - u^2) / 6
u^2 = 25
u = 5 м/с - при этой скорости от мела, как от чеширского кота, остаётся лишь наглая глумливая ухмылка, и больше ничего.
Отсюда поищем время от начала движения до сего печального момента:
t = (v-u) / a = (11-5) / 3 = 2 c
Ну, может я ошибаюсь, но мне так кажется. Если, конечно, мел не украдут раньше в пути его следования.