Кислород массой 400г нагревают при постоянном давлении на 20к. вычислите работу внешних сил, количество теплоты, полученное газом и изменение внутренней энергии. удельная теплоемкость кислорода 920дж/кг*к
В общем я найду расстояние пройденное 2-й точкой до встречи. Будем считать, что эта точка движется медленнее, т.е. ее период больше. v₁ = 2π*r/T₁ => путь пройденный этой точкой l₁ = v₁*t = 2π*r*t/T₁ Соответственно для точки 2 имеем: v₂ = 2π*r/T₂ и l₂ = 2π*r*t/T₂ Расстояние пройденное точкой 1 больше расстояния пройденного точкой 2 на величину длины окружности т.е. на 2*π*r Имеем l₁ - l₂ = 2π*r*t/T₁ - 2π*r*t/T₂ = 2*π*r t/T₁ - t/T₂ = 1 t*((T₂-T₁)/(T₁*T₂)) = 1 => t = T₁*T₂/(T₂-T₁) l₂ = 2*π*r*T₁*T₂/(T₂*(T₂-T₁)) = 2*π*r*T₁/(T₂-T₁) - путь пройденный 2-й точкой до первой встречи.
Механизм передачи энергии заряженными частицами облучаемому веществу один и тот же. При прохождении через вещество заряженная частица теряет свою энергию, вызывая ионизацию и возбуждение атомов до тех пор, пока общий запас энергии уменьшается настолько, что частица утратит ионизирующую В зависимости от знака заряда при пробеге частицы в веществе она, испытывая электростатическое взаимодействие, притягивается или отталкивается от положительно заряженных ядер. Чем больше масса летящей частицы, тем меньше она отклоняется от первоначального направления. Поэтому траектория протонов и более тяжелых ядерных частиц практически прямолинейна, а траектория электронов сильно изломана вследствие рассеяния (отклонения) на орбитальных электронах и ядрах атомов. Этот вид взаимодействия легких частиц (электронов), при котором практически меняется лишь направление их движения, а не энергия, называют упругим рассеянием. При этом взаимодействии электрон передает лишь небольшую часть своей энергии ядру и меняется первоначальное направление движения. При прохождении электрона очень высокой энергии вблизи ядра наблюдается неупругое рассеяние (торможение). При этом скорость летящего электрона снижается, и часть его энергии испускается в виде фотона тормозного излучения. Тормозное излучение – это фотонное излучение, возникающее при уменьшении кинетической энергии заряженной частицы. (Источник: studyguide.ru). При неупругом рассеянии наблюдается также взаимодействие частиц с электронами облучаемого вещества, вызывающее ионизацию или возбуждение атомов. Траектория электрона в веществе имеет сложный вид, связанный с характером взаимодействия. На начальном участке траектория электрона рассеивается на небольшие углы и траектория его мало отличается от прямой линии. С уменьшением энергии электрона (а она колеблется от 20 кэВ до 13,5 МэВ) угол рассеяния увеличивается, и электрон начинает двигаться по извилистой кривой. Таким образом, основными результатами взаимодействия электронов высокой энергии с веществом являются следующие: 1. При неупругих столкновениях энергия затрачивается на ионизацию и возбуждение атомов среды, частично на преобразование в тормозное излучение. 2. При упругих столкновениях энергия преобразуется непосредственно в тепловое движение. 3. В легких веществах (Z≤ 13) тормозное излучение становится заметным при энергиях электрона больших чем 10 МэВ. При меньших энергиях преобладают потери энергии на ионизацию. 4. Первичные электроны создают положительные ионы и вторичные электроны, последние могут обладать энергией, достаточной для ионизации. На долю вторичных ионизаций приходится до 70% общей ионизации. При замедлении вторичные электроны могут создавать отрицательные ионы. 5. Траектория электронов при больших энергиях близкая к линейной. При уменьшении энергии электрон из-за рассеяния начинает двигаться по извилистой кривой. 6. Глубина проникновения электронов в веществе прямо пропорциональна их энергии и обратно пропорциональна плотности вещества.
Будем считать, что эта точка движется медленнее, т.е. ее период больше.
v₁ = 2π*r/T₁ => путь пройденный этой точкой l₁ = v₁*t = 2π*r*t/T₁
Соответственно для точки 2 имеем: v₂ = 2π*r/T₂ и l₂ = 2π*r*t/T₂
Расстояние пройденное точкой 1 больше расстояния пройденного точкой 2 на величину длины окружности т.е. на 2*π*r
Имеем l₁ - l₂ = 2π*r*t/T₁ - 2π*r*t/T₂ = 2*π*r
t/T₁ - t/T₂ = 1
t*((T₂-T₁)/(T₁*T₂)) = 1 => t = T₁*T₂/(T₂-T₁)
l₂ = 2*π*r*T₁*T₂/(T₂*(T₂-T₁)) = 2*π*r*T₁/(T₂-T₁) - путь пройденный 2-й точкой до первой встречи.
В зависимости от знака заряда при пробеге частицы в веществе она, испытывая электростатическое взаимодействие, притягивается или отталкивается от положительно заряженных ядер. Чем больше масса летящей частицы, тем меньше она отклоняется от первоначального направления. Поэтому траектория протонов и более тяжелых ядерных частиц практически прямолинейна, а траектория электронов сильно изломана вследствие рассеяния (отклонения) на орбитальных электронах и ядрах атомов. Этот вид взаимодействия легких частиц (электронов), при котором практически меняется лишь направление их движения, а не энергия, называют упругим рассеянием. При этом взаимодействии электрон передает лишь небольшую часть своей энергии ядру и меняется первоначальное направление движения. При прохождении электрона очень высокой энергии вблизи ядра наблюдается неупругое рассеяние (торможение). При этом скорость летящего электрона снижается, и часть его энергии испускается в виде фотона тормозного излучения. Тормозное излучение – это фотонное излучение, возникающее при уменьшении кинетической энергии заряженной частицы. (Источник: studyguide.ru). При неупругом рассеянии наблюдается также взаимодействие частиц с электронами облучаемого вещества, вызывающее ионизацию или возбуждение атомов.
Траектория электрона в веществе имеет сложный вид, связанный с характером взаимодействия. На начальном участке траектория электрона рассеивается на небольшие углы и траектория его мало отличается от прямой линии. С уменьшением энергии электрона (а она колеблется от 20 кэВ до 13,5 МэВ) угол рассеяния увеличивается, и электрон начинает двигаться по извилистой кривой.
Таким образом, основными результатами взаимодействия электронов высокой энергии с веществом являются следующие:
1. При неупругих столкновениях энергия затрачивается на ионизацию и возбуждение атомов среды, частично на преобразование в тормозное излучение.
2. При упругих столкновениях энергия преобразуется непосредственно в тепловое движение.
3. В легких веществах (Z≤ 13) тормозное излучение становится заметным при энергиях электрона больших чем 10 МэВ. При меньших энергиях преобладают потери энергии на ионизацию.
4. Первичные электроны создают положительные ионы и вторичные электроны, последние могут обладать энергией, достаточной для ионизации. На долю вторичных ионизаций приходится до 70% общей ионизации. При замедлении вторичные электроны могут создавать отрицательные ионы.
5. Траектория электронов при больших энергиях близкая к линейной. При уменьшении энергии электрон из-за рассеяния начинает двигаться по извилистой кривой.
6. Глубина проникновения электронов в веществе прямо пропорциональна их энергии и обратно пропорциональна плотности вещества.