Льдина плавает в воде объём ее подводной части V = 1800 м. Найдите объем надводной части льдины и плотность льда р = 900 кг / м. плотность воды да 1000 кг/м
Дослідження залежності ККД від кута нахилу похилої площини
Мета: Встановити експериментально залежність ККД від кута нахилу похилої площини до горизонту; порівняти результати експериментально одержаної залежності та теоретично отриманого співвідношення.
Обладнання: Похила площина, динамометр, вимірювальна стрічка або лінійка, брусок, транспортир.
Теоретичні відомості
ККД похилої площини є відношення корисної роботи до затраченої , тобто:
; , (1)
де – маса тіла;
– висота похилої площини;
– прискорення вільного падіння;
– сила, необхідна для рівномірного руху тіла вгору по похилій площині;
– довжина похилої площини.
З малюнка
, (2)
де – коефіцієнт тертя;
– кут нахилу похилої площини.
Підставивши (1) в (2) одержимо:
(3)
Щоб знайти коефіцієнт тертя , розмістимо брусок на похилій площині і піднімаючи її за один кінець знайдемо граничний кут, при якому брусок буде ковзати в низ. Це станеться тоді, коли скочуюча сила , звідки:
системе, изображённой на рисунке, трения нет, блоки невесомы, нити невесомы и нерастяжимы, их участки, не лежащие на блоках, вертикальны, массы грузов равны m1 = 1 кг, m2 = 3 кг, m3 = 0,5 кг. Точки подвеса груза m2 — однородной горизонтальной балки — находятся на равных расстояниях от её концов. Найдите модуль и направление ускорения груза массой m1.
Решение.
1. Введём неподвижную декартову систему координат с вертикальной осью ОХ, направленной вниз, причём начало координат поместим на уровне осей верхних блоков, и отметим координаты x1, x2, x3 нижних концов вертикальных участков длинной нити (см. рисунок).
2. Из условия задачи следует, что сила натяжения T длинной нити постоянна по всей её длине, а балка m2 может двигаться только по вертикали, не наклоняясь. Изобразим на рисунке силы тяжести и силы натяжения нити, действующие на все три тела.
3. Запишем уравнения второго закона Ньютона в проекциях на координатную ось OX:
4. Длина нерастяжимой нити равна x1 + 4x2 + x3 = const. Отсюда получаем уравнение кинематической связи для ускорений грузов: a1 + 4a2 + a3 = 0.
5. Выражая ускорения из первых трёх уравнений движения и подставляя их в уравнение кинематической связи, определяем T, а затем, подставляя T в первое уравнение движения, находим a1:
Дослідження залежності ККД від кута нахилу похилої площини
Мета: Встановити експериментально залежність ККД від кута нахилу похилої площини до горизонту; порівняти результати експериментально одержаної залежності та теоретично отриманого співвідношення.
Обладнання: Похила площина, динамометр, вимірювальна стрічка або лінійка, брусок, транспортир.
Теоретичні відомості
ККД похилої площини є відношення корисної роботи до затраченої , тобто:
; , (1)
де – маса тіла;
– висота похилої площини;
– прискорення вільного падіння;
– сила, необхідна для рівномірного руху тіла вгору по похилій площині;
– довжина похилої площини.
З малюнка
, (2)
де – коефіцієнт тертя;
– кут нахилу похилої площини.
Підставивши (1) в (2) одержимо:
(3)
Щоб знайти коефіцієнт тертя , розмістимо брусок на похилій площині і піднімаючи її за один кінець знайдемо граничний кут, при якому брусок буде ковзати в низ. Це станеться тоді, коли скочуюча сила , звідки:
.
Тоді формула (3) набуває вигляду:
Объяснение:
системе, изображённой на рисунке, трения нет, блоки невесомы, нити невесомы и нерастяжимы, их участки, не лежащие на блоках, вертикальны, массы грузов равны m1 = 1 кг, m2 = 3 кг, m3 = 0,5 кг. Точки подвеса груза m2 — однородной горизонтальной балки — находятся на равных расстояниях от её концов. Найдите модуль и направление ускорения груза массой m1.
Решение.
1. Введём неподвижную декартову систему координат с вертикальной осью ОХ, направленной вниз, причём начало координат поместим на уровне осей верхних блоков, и отметим координаты x1, x2, x3 нижних концов вертикальных участков длинной нити (см. рисунок).
2. Из условия задачи следует, что сила натяжения T длинной нити постоянна по всей её длине, а балка m2 может двигаться только по вертикали, не наклоняясь. Изобразим на рисунке силы тяжести и силы натяжения нити, действующие на все три тела.
3. Запишем уравнения второго закона Ньютона в проекциях на координатную ось OX:
4. Длина нерастяжимой нити равна x1 + 4x2 + x3 = const. Отсюда получаем уравнение кинематической связи для ускорений грузов: a1 + 4a2 + a3 = 0.
5. Выражая ускорения из первых трёх уравнений движения и подставляя их в уравнение кинематической связи, определяем T, а затем, подставляя T в первое уравнение движения, находим a1:
м/с2.
ответ: м/с2. Ускорение направлено вниз.
Объяснение: