Лижник спустився з гірки за 6 с, рухаючись з постійним прискоренням 0,5 м/с2. Визначте довжину гірки, якщо відомо, що на початку спуску швидкість лижника дорівнювала 18 км/год. можно с дано ?
Решение: По закону сохр энерг mv^2/2=mgl1-Fнат(∆l/2) {*}. Если бы вместо резинки была нить (нерастяжимая), то mgl=mv^2/2, v^2=2gl=> 2g=v^2/l (1) Тогда применив 2 закон Ньютона для нижней точки траектории, получим Fнат-mg=ma => Fнат=mg+mv^2/l=mg+m2g=3mg (с учетом (1). Подставив в {*}, получим mv^2/2=mgl1-3mg((l1-l)/2). Сократим на m и умножим на 2 (избавляемся от знаменателя), тогда v^2=2gl1-3g(l1-l)=2gl1-3gl1+3gl=3gl-gl1=g(3l-l1). Извлекаем корень v=√g(3l-l1). Подставим и вычислим: v=√9.8*(3*0,8-1)= √9,8*1,4=√13,72=3,7 (м/с). ответ: v=3,7 м/с (примерно с небольшими округлениями и учетом того, что брали нить).
Решение:
По закону сохр энерг mv^2/2=mgl1-Fнат(∆l/2) {*}.
Если бы вместо резинки была нить (нерастяжимая), то mgl=mv^2/2, v^2=2gl=> 2g=v^2/l (1) Тогда применив 2 закон Ньютона для нижней точки траектории, получим Fнат-mg=ma =>
Fнат=mg+mv^2/l=mg+m2g=3mg (с учетом (1). Подставив в {*}, получим mv^2/2=mgl1-3mg((l1-l)/2). Сократим на m и умножим на 2 (избавляемся от знаменателя), тогда
v^2=2gl1-3g(l1-l)=2gl1-3gl1+3gl=3gl-gl1=g(3l-l1). Извлекаем корень v=√g(3l-l1).
Подставим и вычислим: v=√9.8*(3*0,8-1)= √9,8*1,4=√13,72=3,7 (м/с).
ответ: v=3,7 м/с (примерно с небольшими округлениями и учетом того, что брали нить).
Запишем уравнение теплового баланса
Q1 + Q2 = Q3
где Q1 - количество теплоты поглощенное стальным чайником
Q2 - количество теплоты поглощенное водой
Q3 - количество теплоты отданное бруском
Тогда c1*m1 * (t2-t1) + c2*m2 * (t2-t1) = c3*m3 * (t3-t2)
Удельная теплоемкость стали 0,46 кДж/(кг*К), воды 4,18 кДж/(кг*К)
Тогда
0,46*1,2*(25-20) + 4,18*1,9*(25-20) = с3 * 0,65 (100-25)
Отсюда с3 = 0,87 кДж/(кг*К)
Данной удельная теплоемкость может соответствовать Глина у которой с = 0,88 кДж/(кг*К)