В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
amina090806
amina090806
06.10.2020 01:17 •  Физика

Людина піднімає за 16 с з колодязя глибиною 8 м відро води масою 10 кг. Яку потужність при цьому він розвиває?

Показать ответ
Ответ:
вадим1234509876
вадим1234509876
05.06.2022 22:42

ответ в объяснении, взяла с сайта Гущина решувпр

Объяснение:

Рас­смот­рим чертёж.

1) С одной сто­ро­ны ва­го­на че­ты­ре ко­ле­са. По­это­му в по­ез­де 48/4 = 12 ва­го­нов.

2) Длина ва­го­на при­мер­но равна 24,5 м. Вдоль всего со­ста­ва об­ход­чик про­хо­дит за 5 мин = 300 с. Зна­чит, длина по­ез­да при­мер­но равна 294 м, а сред­няя ско­рость об­ход­чи­ка при­мер­но равна 294 м / 300 с = 1 м/с.

3) Ми­ни­маль­ное рас­сто­я­ние между осями двух со­сед­них колёс равно 2,4 м. По­это­му ми­ни­маль­ный ин­тер­вал вре­ме­ни между слы­ши­мы­ми уда­ра­ми равен 2,4 м / 1 м/с = 2,4 с.

 

ответ: 12 ва­го­нов; 1 м/с; 2,4 с.

0,0(0 оценок)
Ответ:
shyndari
shyndari
02.09.2021 23:16
Фа́за колеба́ний полная — аргумент периодической функции, описывающейколебательный или волновой процесс.

Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).

Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению

Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений

Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида

для волны в пространстве любой размерности (например, в трехмерном пространстве)

Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полнаячасто опускают.

Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвигеаргумента (то есть фазы) на  то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса.

То есть, для колебательного процесса (см. выше) фаза (полная)
для волны в одномерном пространстве
для волны в трехмерном пространстве или пространстве любой другой размерности:

,

где  — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время;  — начальная фаза (то есть фаза при t = 0); k— волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например,декартовых).

В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:

1 цикл = 2 радиан = 360 градусов.

В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.

Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координатr, в принципе — произвольная функция
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота