В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
danil250379
danil250379
12.05.2020 06:07 •  Физика

Мідний провідник має масу 200 г (питома теплоємність міді - 380 Дж/
(кг°С), температура плавлення - 1085°С). Скільки часу потрібно щоб він почав (лише почав) плавитися при умові, що тепло не буде розсіюватися в навколишнє середовище, коли по ньому проходитиме струм силою 20 А, а його опір складає 0,1 Ома. За початкову температуру прийняти значення 35°С. (відповідь написати в хвилинах)​

Показать ответ
Ответ:
hudognik78
hudognik78
02.09.2021 03:07

ответ:

от точечного источника s распространяется сферическая волна, волновая поверхность которой - сфера. дойдя до экрана с отверстием, волны дифрагируют, то есть отклоняются от первоначального направления распространения. в соответствии с принципом гюйгенса-френеля каждая точка, до которой дошла волна, становится источником вторичных волн, распространяющихся во все стороны. огибающая фронтов вторичных волн представляет новый фронт волны. причем все вторичные волны когерентны, то есть могут в точке схождения интерферировать. поэтому при определенных условиях в точке р можно наблюдать интерференционную картину, получившуюся в результате дифракции волн. чтобы объяснить наблюдаемую картину, проведем из точки р конические поверхности до пересечения с волновой поверхностью dcd сферической волны (рис. 1). длина pq образующей конической поверхности равна , длина , длина и т.д. на волновой поверхности в результате построения образуются кольцевые зоны - зоны френеля. площади зон, как показывает расчет, приблизительно равны, однако действие этих зон в точке р различно. разность хода волн, приходящих в точку р от любой зоны френеля, не превышает (по построению). поэтому в двух соседних зонах всегда есть такие соответствующие волны, разность хода между которыми в точке схождения р равна . в точке р эти волны встретятся в противофазе и погасят друг друга. волны третьей зоны ослабят действие второй, а волны четвертой ослабят действие третьей и т.д. если в отверстии dd укладывается только две зоны френеля, то в точке р почти не будет света, мы увидим темное пятно, окруженное светлым кольцом. если в отверстии укладывается три зоны френеля, то третья ослабит действие второй, свет от первой зоны пройдет, и в точке р появится светлое пятно, окруженное темным кольцом, за которым вновь наблюдается светлое кольцо и т.д. кольца становятся все тоньше по мере удаления от точки р, а когда они сливаются, картина исчезает.

таким образом, при четном числе зон френеля в точке р наблюдается темное пятно, окруженное чередующимися светлыми и темными кольцами, а при нечетном - светлое пятно, окруженное чередующимися темными и светлыми кольцами. чем больше диаметр отверстия, тем больше зон френеля укладывается в нем. в этом случае для нахождения суммарного действия всех зон в точке р надо учитывать не только разности хода от двух соседних зон, но и плавное убывание амплитуды колебаний, приходящих в точку р от более далеких, по сравнению с центральной, зон.

получим выражение радиуса зоны френеля с номером k, отстоящей от источника s монохроматических волн длины λ на расстояние a, а от точки наблюдения p - на расстояние pd = b + . при этом a » λ, b » λ. введем следующие обозначения (рис. 1): , , pc=b, oc=x, pd = b + . из треугольников sod и pod выразим по теореме пифагора:

приравняв правые части двух последних равенств, выразим х. величиной можно пренебречь по сравнению с другими слагаемыми. тогда получим:

подставим x в выражение для . тогда, пренебрегая вторым слагаемым, получим:

отсюда внешний радиус k-той зоны френеля будет равен

(1)

по условию . выразим из (1) число зон k, укладывающихся в отверстии.

подставляя численные значения, получим:

ответ: = 4, в точке р будет темное пятно.

0,0(0 оценок)
Ответ:
Саша039
Саша039
09.10.2020 12:54

Спросите кого угодно, что произойдет с температурой идеального газа, который расширяется в замкнутом сосуде без теплообмена с окружающей средой, и почти все вам ответят, что газ охладится. Не «верьте! Это не всегда так.

Вообразим такой мысленный эксперимент. Пусть одна половина теплоизолированного сосуда занята идеальным газом с давлением p1 и температурой T1, а другая — пуста (рис. 1). В некоторый момент уберем перегородку между половинами сосуда. Газ, естественно, будет расширяться, причем в пустоту, и после многочисленных столкновений его молекул со стенками и между собой установится новое равновесное состояние. Ясно, что теперь объем газа вдвое больше: V2 = 2V1. А каковы его давление p2 и температура T2?

Рис. 1

С одной стороны, так как процесс адиабатический, точки, соответствующие начальному и конечному состояниям газа, должны лежать на адиабате 1—2’ (рис. 2). Адиабата, как известно, падает круче изотермы, поэтому температура газа должна уменьшаться: T’2 < T1.

Рис. 2

С другой стороны, посмотрим, что говорит первый закон термодинамики. Количество теплоты Q, подведенное к газу, идет на увеличение его внутренней энергии ΔU и на работу по расширению А:

Q=ΔU+A .

В нашем случае Q = 0 (по условию адиабатичности). А какая работа совершается газом? Да никакой, потому, что он расширяется в вакуум, со стороны которого не встречает противодействия. Значит, и сила, и работа равны нулю: А = 0. Следовательно, и изменение внутренней энергии тоже равно нулю: ΔU = 0. Но поскольку в случае идеального газа внутренняя энергия зависит только от температуры, температура не изменится: T2 = T1, и давление станет равным p2=p12. Это означает, что точки, соответствующие начальному и конечному состояниям, будут лежать на изотерме 1-2.

А что происходит между этими состояниями? К сожалению, школьная термодинамика ничего об этом сказать не может. Почему? Да потому, что вся она верна только для очень медленных (так называемых квазистатических) процессов, которые происходят со скоростями, много меньшими тепловой скорости движения молекул. В нашем же случае как только мы уберем перегородку, газ буквально бросится в вакуум со скоростью порядка тепловой скорости молекул и даже еще быстрее, потому что в газе есть отдельные молекулы, скорость которых намного больше тепловой. А тут термодинамика просто неверна. Вот почему на рисунке 2 мы изобразили неизвестный нам процесс штрихами, а не сплошной линией.

Все наши рассуждения справедливы для случая идеального газа. А если газ не идеальный? Тогда его молекулы взаимодействуют друг с другом, и внутренняя энергия газа складывается из кинетической энергии движения молекул и потенциальной энергии их взаимодействия.

На рисунке 3 изображена зависимость потенциальной энергии П взаимодействия двух молекул от расстояния r между ними. Там, где потенциальная энергия минимальна (точка r0), вещество конденсируется, т. е. переходит в жидкое состояние.

Рис. 3

Так как, по условию, мы имеем в начальный момент газ, то среднее расстояние между молекулами соответствует точке r1 >> r0. После удвоения объема среднее расстояние между молекулами станет равным r2=r12–√3>r1. Получилось, как будто в результате расширения газ слегка «вытащили» наверх, по склону потенциальной ямы. Но кто поработал над тем, чтобы увеличить потенциальную энергию на ΔП? Никто. И сам газ тоже ни над кем не работал. Поэтому остается признать, что увеличение потенциальной энергии произошло за счет уменьшения кинетической энергии движущихся молекул. Значит, и температура — мера средней кинетической энергии молекул газа — в результате расширения слегка упадет. Но это верно только в случае реального газа.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота