Сначала составляем уравнение по первому закону Кирхгофа. В цепи с n узлами будет (n-1) уравнений, в нашей цепи три узла, значит, будет два уравнения. Составляем два уравнения, для двух произвольных узлов.
узел D: I3=I1+I2
узел F: I4=I3+I5
Теперь составляем недостающие три уравнения для трех независимых контуров. Чтобы они были независимыми, надо в каждый контур включить хотя бы одну ветвь, не входящую в предыдущую.
Задаемся обходам каждого контура и составляем уравнения по второму закону Кирхгофа.
Контур ABCD - обход против часовой стрелки
E1=I1 (R1+r01) - I2 (R3+R6)
Контур CDFE - обход против часовой стрелки
E2=I2 (R3+R6) +I3R4+I4 (R2+r02)
Контур EGHF - обход по часовой стрелке
E2=I4 (R2+r02) +I5R5
ЭДС в контуре берется со знаком "+", если направление ЭДС совпадает с обходом контура, если не совпадает - знак "-".
Падения напряжения на сопротивления контура, берется со знаком "+", если направления тока в нем совпадает с обходом контура со знаком "-", если не совпадает.
Мы получили систему из пяти уравнений с пятью неизвестными:
Путь, пройденный за 4-ую секунду можно найти через разность координаты тела в 4-ую секунду и координаты тела в 3-ью секунду. При t=3 уравнение координаты выглядит так : x1=4.5a При t=4 : x2= 8a. ( ибо V начальная равна нулю, координата начальная равна нулю x=x0+V0t+at^2/2 ) По условию у нас x1-x2=7 метров 8a-4.5a=3.5a=7 a=7:3.5=2 м/c^2 Ну а дальше мы находим путь за 10 секунд. x=2*10^2/2=100 метров Скорость вычисляется по формуле : V(t)=Vo+at Vo равно нулю по условию ( из состояния покоя же ) Подставляем сюда наши 10 секунд ( потому что 10-ая секунда начинается, когда на секундомере уже идёт 9-ка, это очевидно => конец очень близок к отметке 10 секунд, значит можно смело брать 10 секунд ) V(10)= 2*10=20 м/c ответ: 100 метров; 20 м/c.
Сначала составляем уравнение по первому закону Кирхгофа. В цепи с n узлами будет (n-1) уравнений, в нашей цепи три узла, значит, будет два уравнения. Составляем два уравнения, для двух произвольных узлов.
узел D: I3=I1+I2
узел F: I4=I3+I5
Теперь составляем недостающие три уравнения для трех независимых контуров. Чтобы они были независимыми, надо в каждый контур включить хотя бы одну ветвь, не входящую в предыдущую.
Задаемся обходам каждого контура и составляем уравнения по второму закону Кирхгофа.
Контур ABCD - обход против часовой стрелки
E1=I1 (R1+r01) - I2 (R3+R6)
Контур CDFE - обход против часовой стрелки
E2=I2 (R3+R6) +I3R4+I4 (R2+r02)
Контур EGHF - обход по часовой стрелке
E2=I4 (R2+r02) +I5R5
ЭДС в контуре берется со знаком "+", если направление ЭДС совпадает с обходом контура, если не совпадает - знак "-".
Падения напряжения на сопротивления контура, берется со знаком "+", если направления тока в нем совпадает с обходом контура со знаком "-", если не совпадает.
Мы получили систему из пяти уравнений с пятью неизвестными:
.
При t=3 уравнение координаты выглядит так :
x1=4.5a
При t=4 :
x2= 8a.
( ибо V начальная равна нулю, координата начальная равна нулю x=x0+V0t+at^2/2 )
По условию у нас x1-x2=7 метров
8a-4.5a=3.5a=7
a=7:3.5=2 м/c^2
Ну а дальше мы находим путь за 10 секунд.
x=2*10^2/2=100 метров
Скорость вычисляется по формуле : V(t)=Vo+at
Vo равно нулю по условию ( из состояния покоя же )
Подставляем сюда наши 10 секунд ( потому что 10-ая секунда начинается, когда на секундомере уже идёт 9-ка, это очевидно => конец очень близок к отметке 10 секунд, значит можно смело брать 10 секунд )
V(10)= 2*10=20 м/c
ответ: 100 метров; 20 м/c.