Импульс — это физическая величина, которая в определенных условиях остается постоянной для системы взаимодействующих тел. Модуль импульса равен произведению массы на скорость (p = mv). Закон сохранения импульса формулируется так: В замкнутой системе тел векторная сумма импульсов тел остается постоянной, т. е. не изменяется. Под замкнутой понимают систему, где тела взаимодействуют только друг с другом. Например, если трением и силой тяжести можно пренебречь. Трение может быть мало, а сила тяжести уравновешиваться силой нормальной реакции опоры. Ускорение свободного падения на Земле и на Луне Все тела притягиваются друг к другу — это закон всемирного тяготения. Силы, с которыми тела притягиваются вычисляются по формуле: F = G × m1m2 ÷ R2 Здесь G — это гравитационная постоянная, равная 6,67 × 10-11 Н · м2/кг2. Она численно равна силе, с которой одно тело массой 1 кг притягивает другое тело с массой 1 кг, находящееся от него на расстоянии 1 м. Как мы видим, это очень маленькая сила. Поэтому мы замечаем притяжение только к очень массивным телам, космического масштаба. Период, радиус и скорость При равномерном движении по окружности вектор скорости тела меняется (скорость направлена по касательным к окружности), а модуль скорости тела (числовое значение) остается постоянным. Поэтому если один полный оборот тела по окружности обозначить как s (пройденный путь), а время, за которое он был совершен, как t, то найдем модуль скорости тела, движущегося равномерно по окружности: v = s/t Является ли движение равноускоренным При прямолинейном равноускоренном движении тело за равные промежутки времени проходит разные пути, так как его скорость увеличивается. За каждый следующий временной промежуток тело проходит больший путь, чем за предыдущий. Причем существуют определенные соотношения пути, характерные исключительно для прямолинейного равноускоренного движения. Зная эти соотношения, можно определять, является ли движение равноускоренным или вычислять путь на определенном временном промежутке. Для прямолинейного равноускоренного движения характерны следующие соотношения пути: Формулы прямолинейного равноускоренного движения При прямолинейном равноускоренном движении тело
Открытие нейтрона (1932) принадлежит физику Джеймсу Чедвику, который объяснил результаты опытов В. Боте и Г. Беккера (1930), в которых обнаружилось, что {\displaystyle \alpha }-частицы, вылетающие при распаде полония, воздействуя на лёгкие элементы, приводят к возникновению сильно проникающего излучения. Чедвик первый предположил, что новое проникающее излучение состоит из нейтронов и определил их массу[4]. За это открытие он получил Нобелевскую премию по физике в 1935 году.
В 1930 г. В. А. Амбарцумян и Д. Д. Иваненко показали, что ядро не может, как считалось в то время, состоять из протонов и электронов, что электроны, вылетающие из ядра при бета-распаде, рождаются в момент распада, и что кроме протонов, в ядре должны присутствовать некие нейтральные частицы.[5][6]
В 1930 Вальтер Боте и Г. Бекер, работавшие в Германии, обнаружили, что если высокоэнергетичные альфа-частицы, испускаемые полонием-210, попадают на некоторые лёгкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей чем все известные гамма-лучи, и результаты эксперимента не могут быть таким образом интерпретированы. Важный вклад сделали в 1932 Ирени Фредерик Жолио-Кюри. Они показали, что если это неизвестное излучение попадает на парафин или любое другое соединение, богатое водородом, образуютсяпротоны высоких энергий. Само по себе это ничему не противоречило, но численные результаты приводили к нестыковкам в теории. Позднее в том же 1932 году английский физик Джеймс Чедвик провёл серию экспериментов, в которых он показал, что гамма-лучевая гипотеза несостоятельна. Он предположил, что это излучение состоит из незаряженных частиц с массой, близкой к массе протона, и провёл серию экспериментов, подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами от латинского корня neutral и обычного для частиц суффикса on (он). В том же 1932 г. Д. Д. Иваненко[7] и затем В. Гейзенберг предположили, что атомное ядро состоит из протонов и нейтронов.
Открытие нейтрона (1932) принадлежит физику Джеймсу Чедвику, который объяснил результаты опытов В. Боте и Г. Беккера (1930), в которых обнаружилось, что {\displaystyle \alpha }-частицы, вылетающие при распаде полония, воздействуя на лёгкие элементы, приводят к возникновению сильно проникающего излучения. Чедвик первый предположил, что новое проникающее излучение состоит из нейтронов и определил их массу[4]. За это открытие он получил Нобелевскую премию по физике в 1935 году.
В 1930 г. В. А. Амбарцумян и Д. Д. Иваненко показали, что ядро не может, как считалось в то время, состоять из протонов и электронов, что электроны, вылетающие из ядра при бета-распаде, рождаются в момент распада, и что кроме протонов, в ядре должны присутствовать некие нейтральные частицы.[5][6]
В 1930 Вальтер Боте и Г. Бекер, работавшие в Германии, обнаружили, что если высокоэнергетичные альфа-частицы, испускаемые полонием-210, попадают на некоторые лёгкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей чем все известные гамма-лучи, и результаты эксперимента не могут быть таким образом интерпретированы. Важный вклад сделали в 1932 Ирени Фредерик Жолио-Кюри. Они показали, что если это неизвестное излучение попадает на парафин или любое другое соединение, богатое водородом, образуютсяпротоны высоких энергий. Само по себе это ничему не противоречило, но численные результаты приводили к нестыковкам в теории. Позднее в том же 1932 году английский физик Джеймс Чедвик провёл серию экспериментов, в которых он показал, что гамма-лучевая гипотеза несостоятельна. Он предположил, что это излучение состоит из незаряженных частиц с массой, близкой к массе протона, и провёл серию экспериментов, подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами от латинского корня neutral и обычного для частиц суффикса on (он). В том же 1932 г. Д. Д. Иваненко[7] и затем В. Гейзенберг предположили, что атомное ядро состоит из протонов и нейтронов.