Маятник совершает гармонические колебания. учитывая, что амплитуда его колебаний остаётся постоянной, определите, как и во сколько раз изменится максимальное значение кинетической энергии колеблющегося маятника, если период его колебаний увеличится с т1= 2,8с до т2=9,6с
Объяснение:
Данный тип задач решается следующим образом:
Левый и правый "треугольники" заменяем соединениями в "звезду".
(См. получившуюся схему).
Сопротивление первой, верхней ветви:
R₁ = R/3 + R + R/3 = 5·R / 3
Сопротивление параллельной ей ветви:
R₂ = R/3 + R/3 = 2·R / 3
Далее находим сопротивление этих двух ветвей:
R₁₂ = R₁·R₂ / (R₁+R₂) = 10·R / 21
И, наконец, общее сопротивление цепи:
Rобщ = R/3 + 10·R/21 + R/3 = 8·R/7
Учтем, что R = 35 Ом, получаем:
R общ = 8·35 / 7 = 40 Ом.
Решение задачи упростил тот факт, что сопротивления исходной цепи были одинаковыми.