МN- главная оптическая ось линзы, АВ - предмет , А1 В 1- изображение предмета. Определите графически положение оптического центра и фокусов линзы. Действительное или мнимое получилось изображение ?
Для начала посчитаем объемы отсеков, заполненных газом до и после переворотов, учитывая объем ртути: L1=0.6 м, L2=0.3 м После переворотов: L1'=0.54 м, L2'=0.36 м Так как площадь сосуда постоянна, а для расчетов будем использовать закон Бойля-Мэриота, то площадь сечения сосуда сократится, запишем систему из двух уравнений Бойля-Мэриота для первого и для второго отсеков: 1)0.3po=0.54p' 2)0.6po=0.36(p'+pgh) если состав трубки пребывает в спокойствии, то давление верхнего отсека равно давлению нижнего, исходя из простого равенства сил, тогда давление в нижнем отсеке равно сумме давлений верхнего отсека и столбика ртути. Разделим уравнения друг на друга и найдем таким образом p': 0.72p'=0.36pgh p'=20 400Па Тогда из первого уравнения несложно получить: po=0.54*20400/0.3=36720Па
ЗАКОН АРХИМЕДА — закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.
Если тело произвольной формы занимает внутри жидкости объем V, то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела — ("жидкости все равно на что давить").
Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V — тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V. Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V, т. е. pgV.
L1=0.6 м, L2=0.3 м
После переворотов:
L1'=0.54 м, L2'=0.36 м
Так как площадь сосуда постоянна, а для расчетов будем использовать закон Бойля-Мэриота, то площадь сечения сосуда сократится, запишем систему из двух уравнений Бойля-Мэриота для первого и для второго отсеков:
1)0.3po=0.54p'
2)0.6po=0.36(p'+pgh)
если состав трубки пребывает в спокойствии, то давление верхнего отсека равно давлению нижнего, исходя из простого равенства сил, тогда давление в нижнем отсеке равно сумме давлений верхнего отсека и столбика ртути. Разделим уравнения друг на друга и найдем таким образом p':
0.72p'=0.36pgh
p'=20 400Па
Тогда из первого уравнения несложно получить:
po=0.54*20400/0.3=36720Па
Если тело произвольной формы занимает внутри жидкости объем V, то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела — ("жидкости все равно на что давить").
Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V — тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V. Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V, т. е. pgV.