Выберем за тело второй поезд, за неподвижную систему отсчета землю, за подвижную систему отсчета первый поезд. В задаче требуется найти относительную скорость движения поездов, т.е. скорость тела относительно подвижной системы координат. В обоих случаях направления движения один поезд проходит относительно другого путь, равный сумме длин обоих поездов, т.е. s = L1 + L2.
а) Когда поезда движутся в одном направлении, v1 = v2 + v1,2, откуда v1,2 = v1 - v2, v1,2 = 102 - 48 = 54 км/ч = 15 м/с. Тогда время прохождения одного поезда мимо другого равно
б) Когда поезда движутся навстречу друг другу, v1 = v1,2 - v2, откуда v1,2 = v1 + v2; v1,2 = 102 + 48 = 150 км/ч = 123/3 м/с. Тогда время прохождения одного поезда мимо другого
Объяснение:
Выберем за тело второй поезд, за неподвижную систему отсчета землю, за подвижную систему отсчета первый поезд. В задаче требуется найти относительную скорость движения поездов, т.е. скорость тела относительно подвижной системы координат. В обоих случаях направления движения один поезд проходит относительно другого путь, равный сумме длин обоих поездов, т.е. s = L1 + L2.
а) Когда поезда движутся в одном направлении, v1 = v2 + v1,2, откуда v1,2 = v1 - v2, v1,2 = 102 - 48 = 54 км/ч = 15 м/с. Тогда время прохождения одного поезда мимо другого равно
б) Когда поезда движутся навстречу друг другу, v1 = v1,2 - v2, откуда v1,2 = v1 + v2; v1,2 = 102 + 48 = 150 км/ч = 123/3 м/с. Тогда время прохождения одного поезда мимо другого
Заметим, что при прохождении точки π/2 шарик должен иметь неотличимое натяжение нити, иначе она согнется и полный оборот не получится.
Тогда по второму закону Ньютона имеем: mg = ma, т.е. a = g
Центростремительное ускорение шарика в точке π/2: g = V2^2 / R => V2^2 = g R
Теперь прибегнем к закону сохранения энергии (в точке -π/2 и π/2). Получаем (V1 - начальная скорость шарика, которую мы ищем):
mV1^2 / 2 = mV2^2/2 + mg2R
mV1^2 / 2 = (mgR + 4mgR) / 2
mV1^2 = 5mgR
V1 = √5gR