Из формулы потенциальной энергии видно, что нулевой уровень её будет только в одной точке с координатами (0;0;0). чем дальше частица от этой точки, тем выше её потенциальная энергия. ещё одно замечание связано с тем, что работа силы поля равна разности потенциальных энергий в конце и начале пути. теперь можно подставить значения координат точек и посчитать потенциальную энергию двух этих положений U1=18; U2=18; => работа на данном пути равна нулю. это полно представить так, что вокруг точки (0;0;0) есть области с одинаковыми уровнями энергии, если бы в формуле энергии небыло бы двойки перед х^2 то эта область имела бы форму сферы, а так она будет иметь такую каплевидную фору симметричную относительно оси Ох. эта область как раз будет характеризоваться тем, что работа потенциальной силы в этой области будет равна нулю
1) Найдем коэффициент деформации k = ΔF/Δx = (30-10)/(20-16)= 20/4 = 5 Н/см
Пружина при нагрузке 10Н имеет длину 16см, т.е. при снятии нагрузки она сократится на Δх = F/k = 10/5 = 2 cм , 16 - 2 = 14 см.
При отсутствии нагрузки пружина имеет длину 14см
2) Определим жесткость пружины k = ΔF/Δx = 8-(- 8)/(14-10)=16/4 = 4 H/см
При отсутствии нагрузки пружина имеет длину 12см
При сжатии силой 4 H длина пружины уменьшится на Δх=F/k=4/4= 1cм, 12-1=11см