На рисунке изображено движение футбольного мяча массой 400 г из положения 1 в положение 3. 1. Чему равна работа тяжести при перемещении мяча из положения 1 в положение 2?
2. Чему равна работа тяжести при перемещении мяча из положения 2 в положение 3?
3. Чему равна работа тяжести при перемещении мяча из положения 1 в положение 3?
Обозначим угол наклона как x. Разложим силу тяжести на нормальную N (прижимает тело к поверхности) и тангенциальную T (толкает тело вдоль поверхности) составляющие. N=mg cos(x); T=mg sin(x); Сила трения скольжения равна f=kN, где k - коэффициент трения. Если тело движется без ускорение, значит сумма сил, действующих на него, равна нулю. Нас интересуют только силы, направленные вдоль поверхности. mg*sin(x)-kmg*cos(x)=0; разделим уравнение на mg*cos(x); sin(x)/cos(x)-k=0; tg(x)=k; x=arctg(k); x=arctg(0.7); x=0.6107 рад. x=35 градусов (округлённо)
q = 5*10^-4cos(10^3πt), С= 10 пФ = 10*10^-12 Ф. 1.Найдите: А) Амплитуду колебаний заряда. В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл. Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c. В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц. Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени: Из формулы емкости конденсатора С=q/U имеем u(t) = q(t)/C = (5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A. Значит i(t) =1,57cos(10^3πt+π/2).
Разложим силу тяжести на нормальную N (прижимает тело к поверхности) и тангенциальную T (толкает тело вдоль поверхности) составляющие.
N=mg cos(x);
T=mg sin(x);
Сила трения скольжения равна f=kN, где k - коэффициент трения.
Если тело движется без ускорение, значит сумма сил, действующих на него, равна нулю. Нас интересуют только силы, направленные вдоль поверхности.
mg*sin(x)-kmg*cos(x)=0; разделим уравнение на mg*cos(x);
sin(x)/cos(x)-k=0;
tg(x)=k;
x=arctg(k);
x=arctg(0.7);
x=0.6107 рад.
x=35 градусов (округлённо)
1.Найдите:
А) Амплитуду колебаний заряда.
В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл.
Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c.
В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц.
Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени:
Из формулы емкости конденсатора С=q/U имеем
u(t) = q(t)/C =
(5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A.
Значит i(t) =1,57cos(10^3πt+π/2).