На столе лежит сторка из нескольких одинаковых книг. для того чтобы сдвинуть вбок верхнюю книгу, придерживая все остальные, к ней нужно приложить минимальную горизонтальную силу 2 н. какую минимальную горизонтальную силу нужно приложить ко второй сверху книге, чтобы она начала «выскальзывать» вбок,
если при этом остальные книги придерживают сбоку? с объяснением
Объяснение:
Лучше будет летать самолётик, у которого резина имеет большую жёсткость. Жёсткость резины определяется из закона Гука: k= дробь, числитель — F, знаменатель — \Delta l . Сила упругости равна весу груза F=mg. Значит, сила упругости в резиновых шнурах равна соответственно 10 H, 20 H, 30 H. Учитывая, что удлинения шнуров были одинаковыми, можно сделать вывод, что наибольшая жёсткость у третьего куска резины. Именно его лучше использовать для изготовления резиномотора. Его жёсткость равна k= дробь, числитель — 30 Н, знаменатель — 0,01 м =3000 Н/м.
Дано:
d = 25 мкм = 25*10^(-6) м
L = 50 см = 0,5 м
λ = 500 нм = 500*10^(-9) м
sinφ ≈ tgφ
k = 3
D - ?
Используем условие наблюдения максимумов дифракционной картины:
d*sinφ = +/-k*λ
Идущие от двух соседних щелей две вторичные волны (после падения на решётку основной волны) при разности хода в mλ (m = 1, 2, 3...) будут усиливать друг друга, если синус угла между лучом каждой из волн и нормалью к решётке будет иметь определённое значение. И это распространяется на всю решётку (щелей у неё - огромное множеств). В нашем случае разность хода равна трём длинам волны: 3*λ. На экране наблюдается интерференционный максимум третьего порядка. Тогда условие наблюдения запишем так:
d*sinφ = k*λ, где k = 3
Центральный максимум - это интерференционная картина, образованная совокупностью всех вторичных волн, лучи которых направлены перпендикулярно дифракционной решётке, то есть нормально. Их лучи и есть нормали, по сути. Получается такой треугольник АBC, в котором АB - луч одной волны, АС - нормальный луч второй волны (нормаль), а BC - это расстояние между максимумом третьего порядка и центральным максимумом. Из тригонометрии известно, что отношение противолежащего катета (BC) к прилежащему (АС) равно тангенсу угла "φ" (угла между лучом волны и нормалью):
tgφ = BC/AC
По условию sinφ ≈ tgφ, тогда
tgφ ≈ sinφ = ВС/АС
Учитывая, что ВС = D, а АС = L, получаем:
sinφ = D/L, тогда D равно:
D = L*sinφ
Остаётся лишь выразить синус из условия наблюдения, подставить его выражение в полученное уравнение для D и найти значение D:
d*sinφ = k*λ
sinφ = (k*λ)/d
D = L*sinφ = L*((k*λ)/d) = (L*k*λ)/d = (0,5*3*500*10^(-9))/25*10^(-6) = (1,5*20*10^(-9))/10^(-6) = 30*10^(-3) = 0,03 м = 30 мм
ответ: 30 мм.