В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Alexbouk
Alexbouk
08.08.2020 20:24 •  Физика

Несколько наклонных плоскостей имеют общее основание. при каком угле наклона плоскости к горизонту альфа время соскальзывания тела будет наименьшим? трение отсутствует.

Показать ответ
Ответ:
3твиттер3
3твиттер3
05.10.2020 16:05
• пусть основание всех наклонных плоскостей имеет длину b, а угол, который они составляют с этим основанием, равен α

• если длина плоскости L и тело скатывается без начальной скорости, то справедливо уравнение:

L= \frac{a t^{2} }{2}

○ поэтому время скатывания равно:

t= \sqrt{ \frac{2L}{a} }

• по определению cosα = b/L. значит, L = b/cosα (1)

• так как трение отсутствует, то ускорение телу сообщается только горизонтальной компонентой силы тяжести, то есть a = g sinα (2)

○ используя выражения (1) и (2), получаем для времени скатывания:

t= \sqrt{ \frac{2b}{gsin \alpha cos \alpha } }

• возьмем производную от t(α) и приравняем ее к нулю, дабы найти точки экстремума (предварительно упрощаю выражение):

t= \sqrt{ \frac{4b}{gsin2 \alpha } } \\ \\ \frac{1}{2\sqrt{ \frac{4b}{gsin2 \alpha } }} \frac{0-4gb(sin2 \alpha )'}{ g^{2} sin^{2}2 \alpha }=0 \\ \\ \frac{1}{2} \sqrt{ \frac{gsin2 \alpha }{4b} } \frac{-4gb2cos2 \alpha }{ g^{2} sin^{2}2 \alpha } =0 \\ \\ - \sqrt{ \frac{gsin2 \alpha }{b} } \frac{2bcos2 \alpha }{g sin^{2}2 \alpha } =0 \\ \\ - \frac{ \sqrt{sin2 \alpha }2 \sqrt{b}cos2 \alpha }{ \sqrt{g} sin^{2}2 \alpha } =0


данное равенство выполняется при sin(2α) ≠ 0 и cos(2α) = 0 (b и g равными нулю быть не могут). получаем простое тригонометрическое уравнение (k ∈ Z):

cos2 \alpha =0 \\ \\ 2 \alpha = \frac{ \pi }{2} + \pi k \\ \\ \alpha = \frac{\pi}{4}+ \frac{\pi k}{2}

ясно, что углы больше 90° мы не рассматриваем. поэтому α = 45°. область допустимых углов:

sin2 \alpha \neq 0 \\ \\ a \neq \frac{\pi k}{2}

то есть, α ≠ 90° и α ≠ 180°
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота