норма освещения при чтении 100 лк. будет ли нормальной освещенности книги, если лампа, сила света которой 103 кд ( 100 Вт ), находится на расстоянии 50 см от книги, а угол падения лучей 30 градусов?
Точное уравнение, описывающее колебания маятника такое: Jε = M, где J – момент инерции маятника; ε – угловое ускорение; M – момент силы.
Jε = –mgR sin α, где m – масса маятника; R – расстояние от точки подвеса до центра тяжести; α – угол отклонения маятника.
Для математического маятника принимают, что вся масса маятника сконцентрирована на его конце. Тогда R = L J = mL², где L – длина маятника.
mL²ε = –mgL sin α ε = –(g/L) sin α α" = –(g/L) sin α
Полученное дифференциальное уравнение не описывает гармонические колебания, но если предположить, что sin α ≈ α (для малых углов так оно и есть) , получится уравнение гармонических колебаний
α" = (g/L) α
решением его является функция вида
α = A sin t√(g/L)
Таким образом, циклическая частота равна ω = √(g/L).
ответ: Указанная формула применима при двух условиях:
1) Вся масса маятника сконцентрирована на его конце; 2) Угол отклонения мал, настолько, что sin α ≈ α.
Обозначим массу снаряда за 2m (двойка- чтобы потом чисто поменьше связываться с дробями). И он летит со скоростью v, значит импульс р0 = 2mv. Так?
И вот снаряд разорвался на два осколка, пусть скорость каждого будет u, её надо найти.
Проекция скорости u каждого осколка на линию полёта (а мы же понимаем, что центр масс системы, теперь состоящей из двух осколков будет продолжать двигаться по той же прямой, что и ранее летел снаряд, ага?), будет u * cos(90/2) = u * cos(45) = u * корень(2) / 2.
Проекция импульса каждого осколка на линию полёта будет p1 = m * u * корень(2)/2, а обоих вместе взятых p2 = 2m * u * корень(2) / 2 = mu*корень(2)
Теперь вытаскиваем из шпоры закон сохранения импульса, в данном случае проекции импульса на линию полёта, и приравниваем к исходному импульсу p0 = 2m v = p2 = mu*корень(2) сократим массу 2v = u*корень(2) u = 2v / корень(2) = v*корень(2).
Такой вот у меня получается ответ. Но ты не верь мне, а пересчитай сам, а то вдруг ашипка закралась.
Jε = M,
где J – момент инерции маятника;
ε – угловое ускорение;
M – момент силы.
Jε = –mgR sin α,
где m – масса маятника;
R – расстояние от точки подвеса до центра тяжести;
α – угол отклонения маятника.
Для математического маятника принимают, что вся масса маятника сконцентрирована на его конце. Тогда
R = L
J = mL²,
где L – длина маятника.
mL²ε = –mgL sin α
ε = –(g/L) sin α
α" = –(g/L) sin α
Полученное дифференциальное уравнение не описывает гармонические колебания, но если предположить, что sin α ≈ α (для малых углов так оно и есть) , получится уравнение гармонических колебаний
α" = (g/L) α
решением его является функция вида
α = A sin t√(g/L)
Таким образом, циклическая частота равна ω = √(g/L).
ответ: Указанная формула применима при двух условиях:
1) Вся масса маятника сконцентрирована на его конце;
2) Угол отклонения мал, настолько, что sin α ≈ α.
Обозначим массу снаряда за 2m (двойка- чтобы потом чисто поменьше связываться с дробями). И он летит со скоростью v, значит импульс р0 = 2mv. Так?
И вот снаряд разорвался на два осколка, пусть скорость каждого будет u, её надо найти.
Проекция скорости u каждого осколка на линию полёта (а мы же понимаем, что центр масс системы, теперь состоящей из двух осколков будет продолжать двигаться по той же прямой, что и ранее летел снаряд, ага?), будет
u * cos(90/2) = u * cos(45) = u * корень(2) / 2.
Проекция импульса каждого осколка на линию полёта будет
p1 = m * u * корень(2)/2, а обоих вместе взятых
p2 = 2m * u * корень(2) / 2 = mu*корень(2)
Теперь вытаскиваем из шпоры закон сохранения импульса, в данном случае проекции импульса на линию полёта, и приравниваем к исходному импульсу
p0 = 2m v = p2 = mu*корень(2)
сократим массу
2v = u*корень(2)
u = 2v / корень(2) = v*корень(2).
Такой вот у меня получается ответ. Но ты не верь мне, а пересчитай сам, а то вдруг ашипка закралась.