Равнодействующая - это геометрическая сумма всех отдельно действующих сил:
R = F1 + F2 + F3
Согласно условию задачи, силы могут иметь два направления: вверх или вниз. Если направить оси Y традиционно вверх, то сила, сонаправленная с осью, будет иметь знак "+", а противонаправленная - "-". В условиях задачи предлагается всего четыре варианта равнодействующей. Всем четырём удовлетворяет только один ответ: 1 Н, 3 Н и 7 Н. Проверим:
1 + 3 + 7 = 11
7 + (-3) + (-1) = 7 - 3 - 1 = 3
7 + (-1) + 3 = 7 - 1 + 3 = 9
7 + (-3) + 1 = 5
Вообще здесь работают свойства сложения чётных и нечётных чисел. Смысл такой: поскольку равнодействующая сил имеет нечётное значение (3, 5, 9 или 11), то числа, из которых складывается это нечётное значение, должны быть чётным и нечётным (одно чётное + одно нечётное = нечётное). Так как у нас три силы, а не две, то одна из сил должна иметь нечётное значение, а сумма двух других - чётное.
• по определению кпд: n = q/qзатр, где qзатр - затраченная теплота на нагрев куска меди (будем считать далее, что температура t2 не является температурой плавления меди)
• медь нагревается за счет горения угля. значит:
○ n = q/(q m1)
○ m1 = q/(n q)
• теплота q расходуется на нагрев куска меди: q = c m2 (t2 - t1) (1)
• далее эта же теплота q пойдет на плавление льда (его температура по условию 0 °с, поэтому плавление начнется сразу же): q = λ m3 (2)
• приравняв уравнения (1) и (2), находим:
○ t2 = t1 + ((λ m3)/(c m2))
• подставляем уравнение в выражение (1). получаем:
Равнодействующая - это геометрическая сумма всех отдельно действующих сил:
R = F1 + F2 + F3
Согласно условию задачи, силы могут иметь два направления: вверх или вниз. Если направить оси Y традиционно вверх, то сила, сонаправленная с осью, будет иметь знак "+", а противонаправленная - "-". В условиях задачи предлагается всего четыре варианта равнодействующей. Всем четырём удовлетворяет только один ответ: 1 Н, 3 Н и 7 Н. Проверим:
1 + 3 + 7 = 11
7 + (-3) + (-1) = 7 - 3 - 1 = 3
7 + (-1) + 3 = 7 - 1 + 3 = 9
7 + (-3) + 1 = 5
Вообще здесь работают свойства сложения чётных и нечётных чисел. Смысл такой: поскольку равнодействующая сил имеет нечётное значение (3, 5, 9 или 11), то числа, из которых складывается это нечётное значение, должны быть чётным и нечётным (одно чётное + одно нечётное = нечётное). Так как у нас три силы, а не две, то одна из сил должна иметь нечётное значение, а сумма двух других - чётное.
(1 + 3) = 4 (чётное) + 7 (нечётное) = 11 (нечётное)
(7 + (-3)) = 4 (чётное) + (-1) (нечётное) = 3 (нечётное)
(7 + (-1)) = 6 (чётное) + 3 (нечётное) = 9 (нечётное)
(7 + (-3)) = 4 (чётное) + 1 (нечётное) = 5 (нечётное)
Остальные варианты ответа не подходят, поскольку не во всех суммах получаются заданные значения равнодействующей. Например:
8 + 0,5 + 2,5 = 11 - подходит
8 + (-0,5) + (-2,5) = 5 - подходит
8 + (-0,5) + 2,5 = (8 + (-0,5)) + 2,5 = 10 - не подходит
или 8 + (-2,5) + 0,5 = (8 + (-2,5)) + 0,5 = 6 - не подходит
Последние две суммы, которые не подходят, иллюстрируют свойство сложения двух нечётных чисел - в таком случае всегда получается чётное число.
ответ: 1 Н, 3 Н и 7 Н.
• по определению кпд: n = q/qзатр, где qзатр - затраченная теплота на нагрев куска меди (будем считать далее, что температура t2 не является температурой плавления меди)
• медь нагревается за счет горения угля. значит:
○ n = q/(q m1)
○ m1 = q/(n q)
• теплота q расходуется на нагрев куска меди: q = c m2 (t2 - t1) (1)
• далее эта же теплота q пойдет на плавление льда (его температура по условию 0 °с, поэтому плавление начнется сразу же): q = λ m3 (2)
• приравняв уравнения (1) и (2), находим:
○ t2 = t1 + ((λ m3)/(c m2))
• подставляем уравнение в выражение (1). получаем:
○ t1 = (q - λ m3)/(m2 - m1)