На лснованиии принципа Германа- Эйлера-Даламбера и еще там кого-то уже не помню, можно рассмотреть поезд как покоящийся (т. е. не подвижный) , если приложить к нему все внешние силы (это его вес - М*ж) и силы инерции - в данном случае - центробежной силы, которая рана Ф=М*С2 / Р, ж - ускорение свободного падения, т. е. 9,81 м/с2 где М - масса поезда, С - его скорость (С2 - скорость в квалрате) , Р - радиус кривизны траектории, в задаче - радиус по которому изогнулся мост. Тогда на мост действует сила М*ж + М * С2 / Р = 400 000 * 9,81 + 400 000 * (20*20) / 2000 = 3924000 + 80000 = 4004000 Н (ньютонов) = 4004 кН (килоньютона)
Если масса цепи: m, то масса свисающей части: m x /L,
масса лежащей на столе части: m (1 - x / L)
1) Часть, лежащая на столе:
Если силы трения нет, то на ту часть цепи, что еще на столе, по вертикали действуют сила тяжести и сила реакции опоры, что уравновешивают друг друга.
По горизонтали на границу этой части действует горизонтальная сила, стягивающая ее со стола. Уравнение движения (проекция на горизонтальное направление):
m (1 - x / L) a1 = T
a - горизонтальное ускорение части, лежащей на столе.
T - сила, с которой тянет настольную часть цепи ее свисающая часть.
2) Часть, свисающая вниз.
На нее действуют силы в горизонтальном направлении. В вертикальном направлении вниз действует сила тяжести:
m (x / L) g
И вверх действует сила T, с которой противодействует стягиванию остальная часть цепи. Тогда уравнение движения (проекция на вертикальное направление):
m (x / L) a2 = m (x / L) g - T
3) Помимо пренебрежения трением, принимаем еще допущение о том, что горизонтальная скорость части цепи, лежащей на столе, не достаточно велика, чтобы цепь перестала свисать, прижимаясь к углу стола. Тогда проекции ускорений a1 и a2 равны:
a = x''(t)
4) Тогда получаем два уравнения с двумя неизвестными:
m (1 - x / L) x '' = T
m (x / L) x'' = m g (x / L) - T
Исключаем из уравнения T:
m (x / L) x'' = m g (x / L) - m (1 - x / L) x''
Или:
x '' = (g / L) x
Представим скорость в виде:
x'(t) = v(t) = v(x(t))
Тогда:
x''(t) = dv/dt = (dv/dx) (dx/dt) = v (dv/dx)
Тогда уравнение примет вид:
v (dv/dx) = (g / L) x
Разделяем переменные:
v dv = (g / L) x dx
Умножаем на 2 и интегрируем:
v^2 = Const + (g / L) x^2
Избавляемся от квадрата слева:
v = sqrt[g/L] sqrt(C + x^2)
(выбран знак +, поскольку x увеличивается, и dx/dt = v > 0)
При t = 0, когда x равен своему известному начальному значению (обозначим x0), цепь покоится, что есть dx/dt = v = 0, тогда:
где М - масса поезда, С - его скорость (С2 - скорость в квалрате) , Р - радиус кривизны траектории, в задаче - радиус по которому изогнулся мост.
Тогда на мост действует сила М*ж + М * С2 / Р = 400 000 * 9,81 + 400 000 * (20*20) / 2000 = 3924000 + 80000 = 4004000 Н (ньютонов) = 4004 кН (килоньютона)
Пусть длина цепи: L
Пусть длина свисающей части: x
Тогда длина части, оставшейся на столе: L - x
Если масса цепи: m, то масса свисающей части: m x /L,
масса лежащей на столе части: m (1 - x / L)
1) Часть, лежащая на столе:
Если силы трения нет, то на ту часть цепи, что еще на столе, по вертикали действуют сила тяжести и сила реакции опоры, что уравновешивают друг друга.
По горизонтали на границу этой части действует горизонтальная сила, стягивающая ее со стола. Уравнение движения (проекция на горизонтальное направление):
m (1 - x / L) a1 = T
a - горизонтальное ускорение части, лежащей на столе.
T - сила, с которой тянет настольную часть цепи ее свисающая часть.
2) Часть, свисающая вниз.
На нее действуют силы в горизонтальном направлении. В вертикальном направлении вниз действует сила тяжести:
m (x / L) g
И вверх действует сила T, с которой противодействует стягиванию остальная часть цепи. Тогда уравнение движения (проекция на вертикальное направление):
m (x / L) a2 = m (x / L) g - T
3) Помимо пренебрежения трением, принимаем еще допущение о том, что горизонтальная скорость части цепи, лежащей на столе, не достаточно велика, чтобы цепь перестала свисать, прижимаясь к углу стола. Тогда проекции ускорений a1 и a2 равны:
a = x''(t)
4) Тогда получаем два уравнения с двумя неизвестными:
m (1 - x / L) x '' = T
m (x / L) x'' = m g (x / L) - T
Исключаем из уравнения T:
m (x / L) x'' = m g (x / L) - m (1 - x / L) x''
Или:
x '' = (g / L) x
Представим скорость в виде:
x'(t) = v(t) = v(x(t))
Тогда:
x''(t) = dv/dt = (dv/dx) (dx/dt) = v (dv/dx)
Тогда уравнение примет вид:
v (dv/dx) = (g / L) x
Разделяем переменные:
v dv = (g / L) x dx
Умножаем на 2 и интегрируем:
v^2 = Const + (g / L) x^2
Избавляемся от квадрата слева:
v = sqrt[g/L] sqrt(C + x^2)
(выбран знак +, поскольку x увеличивается, и dx/dt = v > 0)
При t = 0, когда x равен своему известному начальному значению (обозначим x0), цепь покоится, что есть dx/dt = v = 0, тогда:
0 = sqrt[g/L] sqrt(C + x0^2)
То есть: C = - x0^2, тогда:
v = sqr[g/L] sqrt(x^2 - x0^2)
или:
dx/dt = sqrt[g/L] sqrt(x^2 - x0^2)
Разделим переменные:
dx / sqrt(x^2 - x0^2) = sqrt[g/L] dt
Интегрируем:
arcch(x / x0) = sqrt[g/L] t + C
При t = 0, x = x0:
arcch(1) = C
Получаем:
arcch(x / x0) = arcch(1) + sqrt[g/L] t
От сюда выражаем t:
t = sqrt[L/g] { arcch(x / x0) - arcch(1) }
t = sqrt[L/g] { arcch(L / x0) - arcch(1) }
L = 6(м), x0 = 1(м)