ответ:Начнем с анализа имеющегося графика. Итак, процесс 1-2 – изобара, потому что давление не меняется. Объем растет, следовательно, растет температура. Процесс 2-3 – изохора. Объем неизменен, давление падает – следовательно, и температура падает тоже. Последний участок – 3-1 – изотерма. Объем уменьшается, давление растет. Попробуем изобразить этот цикл в новых осях. Возьмем оси V,T. Процесс 1-2 – изобара – будет в этих осях изображаться прямой, выходящей из начала координат. Двигаться по этой прямой будем вверх, так как мы уже заметили, что растут как температура, так и объем.
Следующий процесс – изохора – изображается в осях V,T горизонтальной прямой. Двигаться будем влево, в сторону уменьшения температуры, так как давление падает. Причем можно заметить, что дойти мы должны ровно до начального уровня температуры – ведь дальше она меняться уже не будет.
Ну и последний этап – изотерма, вертикальная прямая в осях V,T – до встречи с точкой 1.
Теперь рассмотрим оси p,T. Изобара в этих осях – горизонтальная прямая, двигаемся вправо: температура растет (ведь объем-то увеличивается на исходном графике):
Следующий процесс – изохора – изображается в осях p,T как прямая, обязательно выходящая из начала координат. Поэтому проводим вс прямую:
И спускаемся по ней (давление же падает) вниз до достижения начальной температуры.
После чего по изотерме нужно подняться вверх до достижения начального давления.
Сила Лоренца — сила, с которой электромагнитное поле, согласно классической (неквантовой) электродинамике, действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью {\displaystyle \mathbf {v} }\mathbf{v} заряд {\displaystyle q\ }q\ лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического {\displaystyle \mathbf {E} }\mathbf {E} и магнитного {\displaystyle \mathbf {B} }\mathbf {B} полей. В Международной системе единиц (СИ) выражается как[2]:
Сила Лоренца, действующая на быстро движущиеся заряженные частицы в пузырьковой камере, приводит к появлению траекторий положительного и отрицательного заряда, которые изгибаются в противоположных направлениях.
Говорится, что электромагнитная сила, действующая на заряд q представляет собой комбинацию силы, действующей в направлении электрического поля E пропорциональной величине поля и количеству заряда, и силы, действующей под прямым углом к магнитному полю B и скорости v, пропорциональная величине магнитного поля, заряду и скорости. Вариации этой базовой формулы описывают магнитную силу действующую на проводник с током (иногда называемую силой Лапласа), электродвижущую силу в проволочной петле, движущейся через область с магнитным полем (закон индукции Фарадея), и силу, действующую на движущиеся заряженные частицы.
Историки науки предполагают, что этот закон подразумевался в статье Джеймса Клерка Максвелла, опубликованной в 1865 году[3] Хендрик Лоренц привёл полный вывод этой формулы в 1895 г.[4] определив вклад электрической силы через несколько лет после того, как Оливер Хевисайд правильно определил вклад магнитной силы.[5][6]
Для силы Лоренца, так же как и для сил инерции, третий закон Ньютона не выполняется. Лишь переформулировав этот закон Ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил Лоренца[7].
ответ:Начнем с анализа имеющегося графика. Итак, процесс 1-2 – изобара, потому что давление не меняется. Объем растет, следовательно, растет температура. Процесс 2-3 – изохора. Объем неизменен, давление падает – следовательно, и температура падает тоже. Последний участок – 3-1 – изотерма. Объем уменьшается, давление растет. Попробуем изобразить этот цикл в новых осях. Возьмем оси V,T. Процесс 1-2 – изобара – будет в этих осях изображаться прямой, выходящей из начала координат. Двигаться по этой прямой будем вверх, так как мы уже заметили, что растут как температура, так и объем.
Следующий процесс – изохора – изображается в осях V,T горизонтальной прямой. Двигаться будем влево, в сторону уменьшения температуры, так как давление падает. Причем можно заметить, что дойти мы должны ровно до начального уровня температуры – ведь дальше она меняться уже не будет.
Ну и последний этап – изотерма, вертикальная прямая в осях V,T – до встречи с точкой 1.
Теперь рассмотрим оси p,T. Изобара в этих осях – горизонтальная прямая, двигаемся вправо: температура растет (ведь объем-то увеличивается на исходном графике):
Следующий процесс – изохора – изображается в осях p,T как прямая, обязательно выходящая из начала координат. Поэтому проводим вс прямую:
И спускаемся по ней (давление же падает) вниз до достижения начальной температуры.
После чего по изотерме нужно подняться вверх до достижения начального давления.
Сила Лоренца — сила, с которой электромагнитное поле, согласно классической (неквантовой) электродинамике, действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью {\displaystyle \mathbf {v} }\mathbf{v} заряд {\displaystyle q\ }q\ лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического {\displaystyle \mathbf {E} }\mathbf {E} и магнитного {\displaystyle \mathbf {B} }\mathbf {B} полей. В Международной системе единиц (СИ) выражается как[2]:
Сила Лоренца, действующая на быстро движущиеся заряженные частицы в пузырьковой камере, приводит к появлению траекторий положительного и отрицательного заряда, которые изгибаются в противоположных направлениях.
{\displaystyle \mathbf {F} =q\left(\mathbf {E} +[\mathbf {v} \times \mathbf {B} ]\right).}{\displaystyle \mathbf {F} =q\left(\mathbf {E} +[\mathbf {v} \times \mathbf {B} ]\right).}
Говорится, что электромагнитная сила, действующая на заряд q представляет собой комбинацию силы, действующей в направлении электрического поля E пропорциональной величине поля и количеству заряда, и силы, действующей под прямым углом к магнитному полю B и скорости v, пропорциональная величине магнитного поля, заряду и скорости. Вариации этой базовой формулы описывают магнитную силу действующую на проводник с током (иногда называемую силой Лапласа), электродвижущую силу в проволочной петле, движущейся через область с магнитным полем (закон индукции Фарадея), и силу, действующую на движущиеся заряженные частицы.
Историки науки предполагают, что этот закон подразумевался в статье Джеймса Клерка Максвелла, опубликованной в 1865 году[3] Хендрик Лоренц привёл полный вывод этой формулы в 1895 г.[4] определив вклад электрической силы через несколько лет после того, как Оливер Хевисайд правильно определил вклад магнитной силы.[5][6]
Для силы Лоренца, так же как и для сил инерции, третий закон Ньютона не выполняется. Лишь переформулировав этот закон Ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил Лоренца[7].