На шайбу действуют две силы: выталкивающая сила (Архимеда) и сила тяжести. В равновесии в проекции на вертикальную ось закон Ньютона для шайбы:
FA=mg. (1) Силу Архимеда FA определим, используя соображения, приведенные при выводе закона Архимеда во введении к разделу.
Если мысленно заменить часть объема шайбы, погруженную в жидкость плотностью ρ1 самой этой жидкостью, и то же самое проделать с другой частью шайбы, то, очевидно, жидкость будет находиться в равновесии. Следовательно, мы вправе записать: FA=(Sh1ρ1+Sh2ρ2)G, (2) где S — площадь сечения шайбы, ρ2h2S — масса жидкости, заменяющая нижнюю часть шайбы, ρ1h1S - верхнюю, правая часть (2) — вес жидкости, вытесненной телом (шайбой).
Запишем также очевидные соотношения: h=h1+h2 (3) m=ρSh. (4)
Решая полученную систему уравнений (1—4), находим: h2=ρ−ρ1ρ2−ρh.
Решить задачу можно и другим
Обозначим давление жидкости на верхнюю поверхность шайбы через P0, на нижнюю — P. Запишем условие равновесия мысленно выделенного столба жидкости (см. рис.) и, после несложных преобразований, получим: P=P0+(ρ1h1+ρ2h2)g.
Сила Архимеда равна: FA=PS−P0S=(ρ1h1+ρ2h2)Sg, где PS — модуль силы, действующей на шайбу вверх, P0S — вниз.
Силы со стороны жидкостей на боковую поверхность шайбы вклада в силу Архимеда не дают.
P = n k M V^2 / 3R => n = 3 R P / k M V^2 = 3*8,31*10^4 / 1,38*10^-23*2*10^-3*64*10^4=24,93*10^4 / 176,64*10^-22 = 0,141*10^26 мол-л/м^3
2. n = N / V; N = m / m0; m0 = M / Na
n = p Na / M = 0,13*6*10^23 / 32*10^-3 = 0,0243*10^26 мол-л/м^3
3. Ek=3/2 * k T; V^2= 3RT / M => T = M V^2 / 3R
Ek = 1,5 k M V^2 / 3R = 1,5*1,38*10^-23*32*10^-3*25*10^4 / 3*8,31 = 1656*10^-22 / 24,93 = 66,425*10^-22 Дж
4. P = 2/3 * Ek n = 2*5*10^-23*16*10^25 / 3 = 53,3*10^2 Па
.
Объяснение:
На шайбу действуют две силы: выталкивающая сила (Архимеда) и сила тяжести. В равновесии в проекции на вертикальную ось закон Ньютона для шайбы:
FA=mg. (1) Силу Архимеда FA определим, используя соображения, приведенные при выводе закона Архимеда во введении к разделу.
Если мысленно заменить часть объема шайбы, погруженную в жидкость плотностью ρ1 самой этой жидкостью, и то же самое проделать с другой частью шайбы, то, очевидно, жидкость будет находиться в равновесии. Следовательно, мы вправе записать: FA=(Sh1ρ1+Sh2ρ2)G, (2) где S — площадь сечения шайбы, ρ2h2S — масса жидкости, заменяющая нижнюю часть шайбы, ρ1h1S - верхнюю, правая часть (2) — вес жидкости, вытесненной телом (шайбой).
Запишем также очевидные соотношения: h=h1+h2 (3) m=ρSh. (4)
Решая полученную систему уравнений (1—4), находим: h2=ρ−ρ1ρ2−ρh.
Решить задачу можно и другим
Обозначим давление жидкости на верхнюю поверхность шайбы через P0, на нижнюю — P. Запишем условие равновесия мысленно выделенного столба жидкости (см. рис.) и, после несложных преобразований, получим: P=P0+(ρ1h1+ρ2h2)g.
Сила Архимеда равна: FA=PS−P0S=(ρ1h1+ρ2h2)Sg, где PS — модуль силы, действующей на шайбу вверх, P0S — вниз.
Силы со стороны жидкостей на боковую поверхность шайбы вклада в силу Архимеда не дают.
Далее решение аналогично первому