Чтобы расплавить свинец массой m требуется энергия Q=Q1+Q2, где Q1 - энергия, необходимая чтобы нагреть свинец до температуры плавления, а Q2 - энергия, необходимая на само плавление. Q1=C*m*(dT), где С - удельная теплоёмкость свинца, m - масса свинца, dT=Tp-T1 разница между температурой плавления (Tp) и текущей температурой свинца (T1=403 К =130 Цельсия). Q2=A*m, где A - удельная теплота плавления свинца. Эта энергия Q должна составлять 90% от кинетической энергии пули E=0.5mv^2. То есть получили уравнение 0.9*0.5mv^2=Q; Отсюда находим минимальную скорость пули: v=SQRT(Q/(0.45m)); v=SQRT((C*m*(dT)+A*m)/(0.45m)); v=SQRT((C*(dT)+A)/(0.45)); v=SQRT((C*(Tp-T1)+A)/(0.45)); Осталось подставить значения (смотри в справочнике)
Q1=C*m*(dT), где С - удельная теплоёмкость свинца, m - масса свинца, dT=Tp-T1 разница между температурой плавления (Tp) и текущей температурой свинца (T1=403 К =130 Цельсия).
Q2=A*m, где A - удельная теплота плавления свинца.
Эта энергия Q должна составлять 90% от кинетической энергии пули E=0.5mv^2. То есть получили уравнение 0.9*0.5mv^2=Q; Отсюда находим минимальную скорость пули:
v=SQRT(Q/(0.45m));
v=SQRT((C*m*(dT)+A*m)/(0.45m));
v=SQRT((C*(dT)+A)/(0.45));
v=SQRT((C*(Tp-T1)+A)/(0.45));
Осталось подставить значения (смотри в справочнике)
Это мы будем делать посредством закона Менделеева-Клапейрона. Имеем в общем виде:
P V = m R T / M. Выводим массу воздуха внутри шара:
m(г) = P V M / R T0.
То же уравнение М.-К. делим на V. Имеем в общем виде:
P = p R T / M. Выводим плотность воздуха снаружи:
p = P M / R T.
А теперь время заняться матаном, хы.
V = (m(об) + (P V M / R T0)) / (P M / R T),
V = (m(об) R T0 + P V M) R T / R T0 P M,
V = (T m(об) R T0 + T P V M) / T0 P M,
T m(об) R T0 + T P V M = V T0 P M,
T m(об) R T0 = V P M (T0 - T),
V = T m(об) R T0 / M P (T0 - T). Отмучались. Считаем:
V = 293 * 120 * 8,31 * 600 / 29*10^-3 * 10^5 * 307,
V = 175 307 760 / 890 300 = 196,908 м^3.