В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Ania151
Ania151
17.11.2022 05:54 •  Физика

Определить энергию, массу и импульс фотона видимого света с длиной волны 700

Показать ответ
Ответ:
kravchenko1712
kravchenko1712
17.02.2020 13:27
Конечно, поставленный вопрос не корректен1. Потому, что энергия конденсатора зависит еще и от его заряда, причем во всех случаях прямо пропорционально квадрату заряда. Говорить же об изменении энергии конденсатора при изменении его емкости следует только при других заданных условиях: остается ли постоянным заряд конденсатора, остается ли неизменным напряжение на конденсаторе?
 Если изменение емкости происходит при неизменном заряде конденсатора (при этом изменяется его напряжение), то для расчета энергии следует использовать формулу W = q2/(2C), которая указывает, что увеличение емкости приводит к уменьшению энергии и, наоборот, уменьшение емкости приводит к увеличению энергии.
 Если же изменение емкости происходит при постоянном напряжении (например, когда конденсатор подключен к источнику постоянной ЭДС), то для расчета энергии и ее изменения нужно использовать выражение W = CU2/2. В этом случае увеличение емкости приводит к увеличению энергии.
0,0(0 оценок)
Ответ:
ARINA5656134
ARINA5656134
24.09.2022 05:28
1. Структура электростатического поля
В силу симметрии задачи, электростатическое поле является центрально-симметричны. т.е. \overline E = E(r) \overline r_0
r₀ - единичный радиус-вектор от заряда к произвольной исследуемой точке пространства.
Задача и её решение инвариантна к повороту (как картинку "ни крути" вокруг заряда, условие задачи и её решение не изменится).

2. Поле при отсутствии шара
Когда у нас есть только точечный заряд модуль напряженности электростатического поля E(r) = k\frac{Q}{r^2}.

Потенциал электростатического поля связан с его напряженностью уравнением:
\phi_1-\phi_2 = \int\limits^{2}_{1} {E} \, dl
Интегрирование ведётся по произвольному пути между точками 1 и 2.

Отступление: если домножить уравнение на пробный заряд, то получим определение потенциальной энергии. Правый ингтеграл в этом случае будет работой, совершенной полем над пробным зарядом.

В нашем случае удобно интегрировать вдоль радиальных линий
\phi_1-\phi_2 = \int\limits^{r_2}_{r_1} {E} \, dr

Замечание: Потенциал определяется всегда с точностью до аддитивной постоянной, поэтому во всех задачах всегда выбирается, так называемое, условие нормировки. В разных задачах оно выбирается по разному, но в задачах данного типа принято брать потенциал бесконечно удаленной точки равным нулю \phi_\infty = 0

\phi_1-\phi_\infty = \phi_1 = \int\limits^{\infty}_{r_1} {E} \, dr

Подставим в эту формулу найденное поле:
\phi = \int\limits^{\infty}_{R} {k \frac{Q}{r^2} } \, dr = kQ\int\limits^{\infty}_{R} { \frac{1}{r^2} } \, dr = kQ ( \lim_{r \to \infty} (- \frac{1}{r}) - (- \frac{1}{R} )) = \frac{kQ}{R}
Получили известный результат. Выразим из этого результата заряд Q.
Q= \frac{\phi R}{k}

3. Поле при добавлении шара.
Для поиска величины напряженности воспользуемся теоремой Гаусса.
\int {\int {E} } \, dS = 4\pi kq
Поток вектора напряженности электростатического поля через любую замкнутую поверхность пропорционален величине свободного заряда, находящегося внутри этой поверхности.

Выберем в качестве такой поверхности сферу радиусом r. В силу структуры поля E(r) = const.
\int {\int {E(r)} } \, dS = E(r)\int {\int {} } \, dS =E(r)*4\pi r^2 = 4\pi kq
E(r) = k \frac{q}{r^2}

Теперь рассмотрим отдельные участки:
1) Участок 0 < r < 3R
E(r) = k \frac{Q}{r^2}
2) Участок 3R<r<4R
E(r) = 0 - электростатического поля внутри идеальных проводников не существует. Если предположить противное, то начнётся движение зарядов и это уже не статика. :)
3) Участок r > 4R
E(r) = k \frac{4Q}{r^2}
4Q - суммарный заряд внутри сферы радиусом r.

Аналогично рассчитаем потенциал.
\phi' = \int\limits^\infty_R {E(r)} \, dr = \int\limits^\infty_{4R} {k \frac{4Q}{r^2} } \, dr + \int\limits^{4R}_{3R} {0} } \, dr +\int\limits^{3R}_{R} {k \frac{Q}{r^2} } \, dr = k \frac{4Q}{4R} + k \frac{Q}{R} - k\frac{Q}{3R}

\phi' = k \frac{5Q}{3R}
Подставляем в это выражение найденное ранее Q и имеем:
\phi' = \frac{5}{3}\phi = 500

Что стоит отметить?
1) Потенциал функция непрерывная. Если знать, что подобные симметричные структуры создают поля аналогичные точечным зарядам, то задача решается в уме.
т.е. мы ищем потенциал на внешней границе шара как потенциал точечного заряда 4Q, на внутренней границе он такой же. Ищем разность потенциалов между внутренней границей и точкой A в поле точечного заряда Q.  Складываем результаты.

2) Несмотря на то, что заряд 3Q на шаре поле внутри шара не создаёт, он увеличивает потенциал точек внутри полости, т.к. создаёт дополнительное поле вне шара. Потенциал - это работа по перемещению точечного заряда из бесконечности в данную точку. Больше поле вне шара - больше работа.

3) Разность потенциалов зависит только от локального поля (поля по в окрестности пути, соединяющего две точки). Сам потенциал зависит от структуры всего поля.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота