При этом ударе (абсолютно неупругом) выполняется закон сохранение импульса. m1v1=(m1+m2)v2; Значит скорость сцепки после столкновения будет v2=m1v1/(m1+m2), а кинетическая энергия E=0.5(m1+m2)*((m1v1)/(m1+m2))^2; E=0.5(m1v1)^2 / (m1+m2); Сила трения равна F=U(m1+m2)g. Чтобы остановить сцепку, она должна совершить работу, равную кинетической энергии сцепки A=E. Так как работа равна силе, умноженной на перемещение A=FL, то путь до остановки сцепки равен L=E/F; (переведём скорость в м/с, разделив 12/3,6=3,(3) м/с) L=0.5(m1v1)^2 / (m1+m2)/(U(m1+m2)g); L=(0.5/Ug)*(m1v1)^2 /(m1+m2)^2; L=(0.5/(0.05*10))*(50000*3,33)^2 / (50000+30000)^2; L=2,3 м (округлённо).
Плотность никеля: ρ = 8,9 г/см³
Объем никеля:
V = m/ρ = 4,8 : 8,9 ≈ 0,54 (см³)
Площадь поверхности куба:
S = V/h = 0,54 : 0,0009 = 600 (см²)
Так как поверхность куба состоит из шести одинаковых квадратных граней, то площадь одной грани:
S₁ = 600 : 6 = 100 (см²)
И сторона куба:
а = √S₁ = √100 = 10 (см)
Объем куба:
V₀ = a³ = 1000 (см³)
Так как плотность стали ρ₀ = 7,8 г/см³, то масса стального куба:
m₀ = ρ₀V₀ = 7,8 · 1000 = 7800 (г) = 7,8 кг
E=0.5(m1v1)^2 / (m1+m2);
Сила трения равна F=U(m1+m2)g. Чтобы остановить сцепку, она должна совершить работу, равную кинетической энергии сцепки A=E. Так как работа равна силе, умноженной на перемещение A=FL, то путь до остановки сцепки равен L=E/F; (переведём скорость в м/с, разделив 12/3,6=3,(3) м/с)
L=0.5(m1v1)^2 / (m1+m2)/(U(m1+m2)g);
L=(0.5/Ug)*(m1v1)^2 /(m1+m2)^2;
L=(0.5/(0.05*10))*(50000*3,33)^2 / (50000+30000)^2;
L=2,3 м (округлённо).