Определить скорость рас волны, если две точки, лежащие на одном и том же луче и находящиеся на расстоянии 4 и 7 м, колеблются в противофазе. Период колебаний 2•10–2 с.
По условию: mg=k1*x1, mg=k2*x2. 1) последовательное соединение пружин. Массами самих пружин пренебрегаем. При этом сила, растягивающая первую пружину, будет mg, и сила, растягивающая вторую пружину будет тоже mg. Тогда растяжение первой пружины (как это видно из условия) будет x1, а растяжение второй пружины (как это видно из условия) будет x2. А общее растяжение системы пружин (соединенных последовательно) очевидно будет x = x1 + x2. 2) параллельное соединение пружин. Растяжение обеих пружин одинаковое. Как для первой, так и для второй пружины, растяжение равно x. Опять пренебрегаем массами самих пружин. Тогда mg = F1+F2 = k1x+k2x = x*(k1+k2), x = mg/(k1+k2). Из условия, k1 = mg/x1, k2 = mg/x2, подставляем последние два равенства в уравнение для x. x = mg/( (mg/x1) + (mg/x2) ) = 1/ ( (1/x1) + (1/x2) ) = [ домножим числитель и знаменатель последней дроби на (x1*x2) ] = x1*x2/(x2+x1). x = x1*x2/(x1+x2).
И газы, жидкости, и тела состоят из молекул. Газы не имеют ни объёма, ни формы, потому что связь между молекулами очень слабая, они находятся на больших расстояниях друг от друга, передвигаются хаотически. Жидкость имеет объём, но не имеет форму, потому что связь между молекулами сильнее, расстояние между ними меньше, передвигаются с одного фиксированного места на другое. Твердое тело сохраняет и объем, и форму потому что молекулы имеют очень сильную связь между собой, и расположены определённой кристаллической решёткой.
1) последовательное соединение пружин. Массами самих пружин пренебрегаем. При этом сила, растягивающая первую пружину, будет mg, и сила, растягивающая вторую пружину будет тоже mg.
Тогда растяжение первой пружины (как это видно из условия) будет x1, а растяжение второй пружины (как это видно из условия) будет x2.
А общее растяжение системы пружин (соединенных последовательно) очевидно будет x = x1 + x2.
2) параллельное соединение пружин. Растяжение обеих пружин одинаковое. Как для первой, так и для второй пружины, растяжение равно x. Опять пренебрегаем массами самих пружин. Тогда
mg = F1+F2 = k1x+k2x = x*(k1+k2),
x = mg/(k1+k2).
Из условия, k1 = mg/x1,
k2 = mg/x2, подставляем последние два равенства в уравнение для x.
x = mg/( (mg/x1) + (mg/x2) ) = 1/ ( (1/x1) + (1/x2) ) = [ домножим числитель и знаменатель последней дроби на (x1*x2) ] = x1*x2/(x2+x1).
x = x1*x2/(x1+x2).