Определить среднюю квадратичную скорость и среднюю кинетическую энергию молекул азота при температуре 300 К. Какова внутренняя энергия идеального газа, занимающего при температуре 300 К, объем 10 м3, если концентрация молекул 5 10-7 м-3?
угловое ускорение — векторная величина, характеризующая быстроту изменения угловой скорости твердого тела.
Объяснение:
Касательное ускорение характеризует изменение скорости по величине.
Угловое ускорение имеет связь с полным и тангенциальным ускорениями. Пусть некоторая точка вращается неравномерно по окружности с радиусом R R, тогда: α r = ε R αr=εR. Нормальное ускорение имеет также связь с угловым: a n = ω 2 R an=ω2R. Учтем это выражение и для полного ускорения получим: a = √ a 2 r + a 2 n = R √ ε 2 + ω 4 a=ar2+an2=Rε2+ω4 Для равнопеременного движения: ω = ε t ; a n = ω 2 R = ε 2 t 2 R ω=εt; an=ω2R=ε2t2R и a = R √ ε 2 + ε 4 t 4 = R ε √ 1 + ε 2 t 4
Объяснение:
в начальный момент времени школьники и их камни находятся в точках А и В.
с момента броска камни движутся в поле силы тяжести с одинаковым ускорением направленым вниз
в системе отсчета связанной с нижним камнем верхний движется прямолинейно равномерно (не ускоренно) потому что оба имеют одинаковое ускорение.
относительная скорость второго направлена вдоль вектора BF.
вектор BF состоит из вектора горизонтальной скорости второго камня минус вектор первого.
так как по модулю эти скорости одинаковы то вектор BF направлен под углом 60 градусов к оси х
чтобы найти минимальное расстояние нужно опустить перпендикуляр AD на прямую BD
дальше математика
АВ = BC/sin(30) = h/(0,5) = 2h
AD = AB*sin(30) = 2*h*sin(30)= 2*20*0,5=20 м
угловое ускорение — векторная величина, характеризующая быстроту изменения угловой скорости твердого тела.
Объяснение:
Касательное ускорение характеризует изменение скорости по величине.
Угловое ускорение имеет связь с полным и тангенциальным ускорениями. Пусть некоторая точка вращается неравномерно по окружности с радиусом R R, тогда: α r = ε R αr=εR. Нормальное ускорение имеет также связь с угловым: a n = ω 2 R an=ω2R. Учтем это выражение и для полного ускорения получим: a = √ a 2 r + a 2 n = R √ ε 2 + ω 4 a=ar2+an2=Rε2+ω4 Для равнопеременного движения: ω = ε t ; a n = ω 2 R = ε 2 t 2 R ω=εt; an=ω2R=ε2t2R и a = R √ ε 2 + ε 4 t 4 = R ε √ 1 + ε 2 t 4