Родился в местечке вулсторп, .после школы образование в биографии ньютона было получено в колледже святой троицы при кембриджском университете. под влиянием , ньютон еще в студенчестве сделал несколько открытий, в большей степени .в период с 1664 по 1666 год он вывел формулу бинома ньютона, формулу ньютона –лейбница, вывел закон всемирного тяготения. в 1668 году в биографии исаака ньютона получена степень магистра, в 1669 – профессора наук. созданному ньютоном телескопу (рефлектору) были сделаны значительные открытия в астрономии. ученый был членом королевского двора (с 1703 — президент), смотрителем монетного двора.законы ньютона являют собой основы классической механики. первый закон ньютона объясняет сохранение скорости тела при скомпенсированных внешних воздействиях. второй закон ньютона описывает зависимость ускорения тела от приложенной силы. из трех законов ньютона могут быть выведены другие законы механики. любовь ньютона к обусловила величайших ряд его открытий в данной науке. так он описал интегральное, дифференциальное исчисление, метод разностей, метод поиска корней уравнения (метод ньютона).
Решение. Для достижения необходимого результата надо холодную воду разделить на несколько частей и нагревать их поочередно. Рассмотрим простейший вариант: разделим холодную воду на две части. Нальем в сосуд часть холодной воды из первого термоса, затем опустим сосуд во второй термос (с горячей водой). Спустя некоторое время в результате теплообмена температура воды в термосе и тонкостенном сосуде сравняется, причем установившаяся температура Θ1 будет удовлетворять двойному неравенству; t1 < Θ1 < t2, (1) где t1 − начальная температура холодной воды (первый термос), t2 − начальная температура горячей воды (второй термос). Выльем нагретую до температуры Θ1 воду в третий термос, а в сосуд нальем оставшуюся холодную воду (ее температура равна t1) из первого термоса и снова погрузим сосуд во второй термос (температура воды в нем Θ1). Установившаяся спустя небольшое время температура воды Θ2 в сосуде и во втором термосе будет удовлетворять неравенству: t1 < Θ2 < Θ1. (2) Снова выльем воду с температурой Θ2 из сосуда в третий термос (в нем находится вода с температурой Θ1). В результате теплообмена в этом термосе установится температура Θ3, удовлетворяющая неравенству; Θ2 < Θ3 < Θ1. (3) Вода, которая первоначально была горячей, находится все время во втором термосе и ее окончательная температура будет равна Θ2. Неравенство (3) указывает, что поставленная перед нами цель достигнута.
Для достижения необходимого результата надо холодную воду разделить на несколько частей и нагревать их поочередно.
Рассмотрим простейший вариант: разделим холодную воду на две части. Нальем в сосуд часть холодной воды из первого термоса, затем опустим сосуд во второй термос (с горячей водой). Спустя некоторое время в результате теплообмена температура воды в термосе и тонкостенном сосуде сравняется, причем установившаяся температура Θ1 будет удовлетворять двойному неравенству;
t1 < Θ1 < t2, (1)
где t1 − начальная температура холодной воды (первый термос), t2 − начальная температура горячей воды (второй термос).
Выльем нагретую до температуры Θ1 воду в третий термос, а в сосуд нальем оставшуюся холодную воду (ее температура равна t1) из первого термоса и снова погрузим сосуд во второй термос (температура воды в нем Θ1). Установившаяся спустя небольшое время температура воды Θ2 в сосуде и во втором термосе будет удовлетворять неравенству:
t1 < Θ2 < Θ1. (2)
Снова выльем воду с температурой Θ2 из сосуда в третий термос (в нем находится вода с температурой Θ1). В результате теплообмена в этом термосе установится температура Θ3, удовлетворяющая неравенству;
Θ2 < Θ3 < Θ1. (3)
Вода, которая первоначально была горячей, находится все время во втором термосе и ее окончательная температура будет равна Θ2. Неравенство (3) указывает, что поставленная перед нами цель достигнута.