Причина движения космического корабля по круговой орбите заключается в том что сила тяготения направлена перпендикулярно скорости корабля такая сила не совершает работу а меняет скорость корабля только по направлению Очевидно что тут нет никакой инерции потому что скорость постоянно меняется по направлению m*a=G*m*M/R^2 a=V^2/R V=√G*M/R - первая космическая скорость
Если же сила направлена не перпендикулярно скорости то траектория может быть разной в зависимости от величины скорости ( прямая, траектория, эллипс...)
В основе принципа реактивного движения лежит закон сохранения импульса часть массы ракеты в виде отработанных газов выбрасывается в одну сторону а сама ракета движется в противоположную сторону
α ≈ 2°, T ≈ 4,9 мН
Объяснение:
Дано:
σ = 30 мкКл/м² = 3·10⁻⁵ Кл/м²
m = 0,5 г = 5·10⁻⁴ кг
q = 0,1 нКл = 10⁻¹⁰ Кл
g = 9,8 м/с²
ε₀ = 8,85·10⁻¹² Ф/м
Найти: T, α.
Напряжённость электрического поля бесконечной плоскости:
E = σ/(2ε₀).
Сила электростатического отталкивания между плоскостью и шариком:
F = q·E = q·σ/(2ε₀) = qσ/(2ε₀)
Согласно второму закону Ньютона:
х: F - T·sin α = 0
y: T·cos α - mg = 0
T·sin α = F (1)
T·cos α = mg (2)
Найдём угол α. Для этого поделим (1) на (2): tg α = F/mg.
α = arc tg F/mg = arc tg (qσ/(2ε₀))/mg = arc tg qσ/(2ε₀mg) =
arc tg 10⁻¹⁰·3·10⁻⁵/(2·8,85·10⁻¹²·5·10⁻⁴·9,8) = arc tg 10⁻¹⁰·3·10⁻⁵/(2·8,85·10⁻¹²·5·10⁻⁴·9,8) = arc tg 3/(8,85·9,8) ≈ 2°
Найдём силу натяжения нити T из (2): T = mg/cos α =
5·10⁻⁴·9,8/cos 2° ≈ 4,9·10⁻³ Н = 4,9 мН.
такая сила не совершает работу а меняет скорость корабля только по направлению
Очевидно что тут нет никакой инерции потому что скорость постоянно меняется по направлению
m*a=G*m*M/R^2
a=V^2/R
V=√G*M/R - первая космическая скорость
Если же сила направлена не перпендикулярно скорости то траектория может быть разной в зависимости от величины скорости ( прямая, траектория, эллипс...)
В основе принципа реактивного движения лежит закон сохранения импульса
часть массы ракеты в виде отработанных газов выбрасывается в одну сторону а сама ракета движется в противоположную сторону