Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
Пусть дан источник с ЭДС \displaystyle \varepsilon , напряжение во внешней цепи \displaystyle U. Внутреннее сопротивление источника — \displaystyle r, а сопротивление внешней цепи — \displaystyle R. В данной системе течёт электрический ток \displaystyle I. Тогда:
для участка цепи (исходя из закона Ома для участка цепи):
\displaystyle I=\frac{U}{R} (1)
для полной цепи (исходя из закона Ома для полной цепи):
\displaystyle I=\frac{\varepsilon }{R+r} (2)
Логично предположить, что количество электронов, сгенерированных источником, равно количеству электронов, ушедших в цепь, тогда приравниваем (1) и (2)
Среднюю скорость катера можно сосчитать по формуле:
\[{\upsilon _{ср}} = \frac{{{S_1} + {S_2}}}{{{t_1} + {t_2}}}\]
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
\[\left\{ \begin{gathered}
{t_1} = \frac{S}{{2{\upsilon _1}}} = \frac{S}{{4{\upsilon _2}}} \hfill \\
{t_2} = \frac{S}{{2{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Подставим выражения для времен \(t_1\) и \(t_2\) в формулу средней скорости.
\[{\upsilon _{ср}} = \frac{S}{{\frac{S}{{4{\upsilon _2}}} + \frac{S}{{2{\upsilon _2 = \frac{S}{{\frac{{3S}}{{4{\upsilon _2 = \frac{{S \cdot 4{\upsilon _2}}}{{3S}} = \frac{{4{\upsilon _2}}}{3}\]
Значит необходимая нам скорость \(\upsilon_2\) определяется по такой формуле.
Пусть дан источник с ЭДС \displaystyle \varepsilon , напряжение во внешней цепи \displaystyle U. Внутреннее сопротивление источника — \displaystyle r, а сопротивление внешней цепи — \displaystyle R. В данной системе течёт электрический ток \displaystyle I. Тогда:
для участка цепи (исходя из закона Ома для участка цепи):
\displaystyle I=\frac{U}{R} (1)
для полной цепи (исходя из закона Ома для полной цепи):
\displaystyle I=\frac{\varepsilon }{R+r} (2)
Логично предположить, что количество электронов, сгенерированных источником, равно количеству электронов, ушедших в цепь, тогда приравниваем (1) и (2)