Оси на который установлен на колёса автомобиля массой 1,35 тонн расположен на расстоянии 3 м друг от друга центр массы который находится на расстоянии 1,2 м а передней оси определите силу тяжести приложенную к каждой оси
В сообщающихся сосудах покоящаяся жидкость находится на одном уровне, но в сосудах с жидкостями различной плотности жидкость с меньшей плотностью останется на более высоком уровне, чем жидкость с большей. Так как ртуть тяжелее воды, то вода останется на поверхности узкого сосуда, а в широкомбудет только ртуть. Пусть d - диаметр поперечного сечения узкого сосуда, тогда 4d - широкого. При добавлени воды в узкий сосуд действует сила F=1000*g*pi*d^2/4=250*g*pi*d^2 Н. Под действием этой силы уровень ртути в широком сосуде повышается до тех пор, пока дополнительный объём ртути своей массой не скомпенсирует массу добавленной воды. Пусть ртуть в широком сосуде при этом поднимется на h м, тогда дополнительный объём ртути V=pi*(4d)^2/4*h=4*pi*d^2*h, а масса этого объёма ртути будет равна 13600*4*pi*d^2*h. Приравнивая эту массу к массе добавленной воды, получаем 54400*pi*d^2*h=250*pi*d^2, откуда h=250/54400=0,0046 м=0,46 см
Предположим, весь лед растает. На это потребуется 680 кДж. Горячая вода может остыть только до 0, отдав при этом 378 кДж. С учетом потерь - 341 кДж Значит весь лед растопить не удастся. Для нагревания на 5 градусов 2 кг льда нужно 2100*2*5=21 кДж (уд. теплоемкость льда 2100 Дж/(кг*К) ) Вся остальная теплота (341-21=320 кДж) уйдет на плавление части льда. Расплавить мы сумеем 320/340=0.94 кг льда. В результате получим равновесную систему лед+вода при температуре 0 градусов, в которой будет 1,94 кг воды и 1,06 кг льда
На это потребуется 680 кДж.
Горячая вода может остыть только до 0, отдав при этом 378 кДж. С учетом потерь - 341 кДж
Значит весь лед растопить не удастся.
Для нагревания на 5 градусов 2 кг льда нужно 2100*2*5=21 кДж (уд. теплоемкость льда 2100 Дж/(кг*К) )
Вся остальная теплота (341-21=320 кДж) уйдет на плавление части льда.
Расплавить мы сумеем 320/340=0.94 кг льда.
В результате получим равновесную систему лед+вода при температуре 0 градусов, в которой будет 1,94 кг воды и 1,06 кг льда