Перший автомобіль що рухається рівномірно зі швидкістю 15 м/с протягом 8 секунд пройшов такий самий шлях який пройшов другий автомобіль за 15 секунд визначте швидкість руху автомобіля
См. рисунок. Получаются два прямоугольных треугольника, которые являются подобными по трём углам. Прилежащий катет большого треугольника обозначим как (L - x), а прилежащий малого - как х, тогда составим пропорцию из отношений катетов:
L/(L - x) = (L/2)/x
L/(L - x) = L/(2x) | * 2x*(L - x)
2Lx = L*(L - x) | : L
2x = L - x
3x = L
x = L/3
Теперь выразим гипотенузу каждого из треугольников. Затем сложим их: сумма будет являться перемещением:
Звезды первой звездной величины примерно в 2,512 раза ярче звезд второй звездной величины, звезды второй величины – примерно в 2,512 раза ярче звезд третьей, и так далее. Звезды шестой звездной величины ровно в сто раз слабее светят, чем звезды первой звездной величины.
Шкала звездных величин продолжается в наши дни за границы, установленные Гиппархом. Звезды нулевой звездной величины в те же 2,512 раза ярче звезд первой, а звезды седьмой в 2,512 менее ярки, чем звезды шестой. Чем меньше звездная величина, тем ярче объект. Есть звезды даже отрицательной звездной величины. Звезды со звездной величиной большей, чем 6,5, обычному человеку невооруженным глазом не увидеть. Для их наблюдения нужны телескопы. Современные телескопы позволяют разглядеть звезды 30-й звездной величины. Перемножьте 24 раза число 2,5, чтобы узнать, во сколько раз они более зорки, чем глаз человека.
Звездную величину принято обозначать индексом m возле числа, вот пример: 2,56m. Сегодня мы знаем, что яркость звезды связана не только с размером звезды, но и с расстоянием до нее, а также ее цветом.
Дано:
L1 = L2 = L = 4 км
L3 = L/2 = 2 км
s_o, L_o - ?
См. рисунок. Получаются два прямоугольных треугольника, которые являются подобными по трём углам. Прилежащий катет большого треугольника обозначим как (L - x), а прилежащий малого - как х, тогда составим пропорцию из отношений катетов:
L/(L - x) = (L/2)/x
L/(L - x) = L/(2x) | * 2x*(L - x)
2Lx = L*(L - x) | : L
2x = L - x
3x = L
x = L/3
Теперь выразим гипотенузу каждого из треугольников. Затем сложим их: сумма будет являться перемещением:
d1² = L² + (L - x)² - квадрат гипотенузы большого треугольника => d1 = √(L² + (L - x)²)
d2² = (L/2)² + x² - квадрат гипотенузы малого треугольника => d2 = √((L/2)² + x²)
s_o = d1 + d2 = √(L² + (L - x)²) + √((L/2)² + x²)
Подставляем выражение x:
s_o = √(L² + (L - L/3)²) + √((L/2)² + (L/3)²) = √(L² + (2L/3)²) + √(L²/4 + L²/9) = √(L² + 4L²/9) + √(9L²/36 + 4L²/36) = √(9L²/9 + 4L²/9) + √(13L²/36) = √(13L²/9) + √13*L/6 = √13*L/3 + √13*L/6 = 2√13*L/6 + √13*L/6 = 3√13*L/6 = √13*L/2 = √13*4/2 = 2√13 = 7,211... = 7,2 км
Общий путь будет просто суммой всех расстояний:
L_o = L1 + L2 + L3 = 4 + 4 + 2 = 10 км
ответ: 7,2 км; 10 км.
Шкала звездных величин продолжается в наши дни за границы, установленные Гиппархом. Звезды нулевой звездной величины в те же 2,512 раза ярче звезд первой, а звезды седьмой в 2,512 менее ярки, чем звезды шестой. Чем меньше звездная величина, тем ярче объект. Есть звезды даже отрицательной звездной величины. Звезды со звездной величиной большей, чем 6,5, обычному человеку невооруженным глазом не увидеть. Для их наблюдения нужны телескопы. Современные телескопы позволяют разглядеть звезды 30-й звездной величины. Перемножьте 24 раза число 2,5, чтобы узнать, во сколько раз они более зорки, чем глаз человека.
Звездную величину принято обозначать индексом m возле числа, вот пример: 2,56m. Сегодня мы знаем, что яркость звезды связана не только с размером звезды, но и с расстоянием до нее, а также ее цветом.