Первую половину пути, равную 1800м, турист шёл со скоростью 1,5м/с, вторую половину пути бежал – со скоростью 2,5м/с. С какой средней скоростью двигался турист
Задание дано не корректно! Во первых, не сказано, какого типа лампы (накаливания, галогенные, люминесцентные или светодиодные). Во вторых, для определения потребляемой лампами мощности необходимо значение напряжения. В третьих, не все лампы допускают последовательное соединение.
Поэтому примем лампы накаливания (допускающие последовательное соединение) и стандартное напряжение 220 В. В этом случае тоже есть "подводный камень". Лампы накаливания имеют нелинейную вольт-амперную характеристику. При разном напряжении (и, следовательно, температуре спирали) лампа имеет разное сопротивление.
Поэтому примем ещё одно допущение - не учитываем разность сопротивления лампы при разных напряжениях.
Лампа мощностью 49 Вт имеет сопротивление 220²/49 = найди сам Ом. Лампа мощностью 60 Вт имеет сопротивление 220²/60 = 806,6667 Ом. Их общее сопротивление равно найденный постав сюда + 806,6667 = 2016,667 Ом. Ток вцепи равен 220/2016,667 = 0,109091 А. Тогда лампа в 40 Ватт потребляет 0,109091²*сюда тоже постав= 14,4 Вт. Лампа в 60 Ватт потребляет 0,109091²*806,6667 = 9,6 Вт. Короче заново пересчитай числа
Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).
Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению
Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений
Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида
для волны в пространстве любой размерности (например, в трехмерном пространстве)
Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полнаячасто опускают.
Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвигеаргумента (то есть фазы) на то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса.
То есть, для колебательного процесса (см. выше) фаза (полная) для волны в одномерном пространстве для волны в трехмерном пространстве или пространстве любой другой размерности:
,
где — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время; — начальная фаза (то есть фаза при t = 0); k— волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например,декартовых).
В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:
1 цикл = 2 радиан = 360 градусов.
В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.
Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координатr, в принципе — произвольная функция
Во первых, не сказано, какого типа лампы (накаливания, галогенные, люминесцентные или светодиодные).
Во вторых, для определения потребляемой лампами мощности необходимо значение напряжения.
В третьих, не все лампы допускают последовательное соединение.
Поэтому примем лампы накаливания (допускающие последовательное соединение) и стандартное напряжение 220 В.
В этом случае тоже есть "подводный камень".
Лампы накаливания имеют нелинейную вольт-амперную характеристику. При разном напряжении (и, следовательно, температуре спирали) лампа имеет разное сопротивление.
Поэтому примем ещё одно допущение - не учитываем разность сопротивления лампы при разных напряжениях.
Лампа мощностью 49 Вт имеет сопротивление 220²/49 = найди сам Ом.
Лампа мощностью 60 Вт имеет сопротивление 220²/60 = 806,6667 Ом.
Их общее сопротивление равно найденный постав сюда + 806,6667 = 2016,667 Ом.
Ток вцепи равен 220/2016,667 = 0,109091 А.
Тогда лампа в 40 Ватт потребляет 0,109091²*сюда тоже постав= 14,4 Вт.
Лампа в 60 Ватт потребляет 0,109091²*806,6667 = 9,6 Вт.
Короче заново пересчитай числа
Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).
Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению
Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений
Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида
для волны в пространстве любой размерности (например, в трехмерном пространстве)
Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полнаячасто опускают.
Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвигеаргумента (то есть фазы) на то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса.
То есть, для колебательного процесса (см. выше) фаза (полная)
для волны в одномерном пространстве
для волны в трехмерном пространстве или пространстве любой другой размерности:
,
где — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время; — начальная фаза (то есть фаза при t = 0); k— волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например,декартовых).
В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:
1 цикл = 2 радиан = 360 градусов.
В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.
Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координатr, в принципе — произвольная функция