Проще всего вначале вычислить не работу силы , действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сила давления газа, действуя на поршень с силой . согласно третьему закону ньютона . модуль силы, действующей со стороны газа на поршень, равен , где p - давление газа, а s - площадь поверхности поршня. пусть газ расширяется изобарно и поршень смещается в направлении силы на малое расстояние . так как давление газа постоянно, то работа газа равна: эту работу можно выразить через изменение объема газа. начальный его объем v1=sh1, а конечныйv2=sh2. поэтому где - изменение объема газа. при расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня .
Задача очень простая, на умение записывать уравнения движения тел в соответствующих осях. Рисунок для решения мы приводим справа, для его увеличения нажмите на него.
Запишем уравнения движения тела по оси y:
y=v0sinα⋅t—gt22 Заменяя в уравнении y на данное h, получим квадратное уравнения, которое необходимо решить для нахождения времени полета. Неудивительно, что уравнение имеет 2 корня, поскольку на данной высоте тело за все время полета будет находиться 2 раза, что видно из рисунка.
Запишем уравнения движения тела по оси y:
y=v0sinα⋅t—gt22
Заменяя в уравнении y на данное h, получим квадратное уравнения, которое необходимо решить для нахождения времени полета. Неудивительно, что уравнение имеет 2 корня, поскольку на данной высоте тело за все время полета будет находиться 2 раза, что видно из рисунка.
h=v0sinα⋅t—gt22
gt2—2v0sinα⋅t+2h=0
Найдем дискриминант:
D=4v20sin2α—8gh
Проверять положительность дискриминанта не будем, поскольку решение задачи быть должно, значит он априори неотрицателен.
Тогда корни квадратного уравнения равны:
t=2v0sinα±4v20sin2α—8gh−−−−−−−−−−−−√2g
Мы получили ответ в общем виде. Теперь подставим все известные величины в СИ:
t=2⋅10⋅sin30∘±4⋅102⋅sin230∘—8⋅10⋅1,05−−−−−−−−−−−−−−−−−−−−−−−√2⋅10
Получаем два корня:
[t=0,7сt=0,3с