Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и равная отношению силы {\displaystyle {\vec {F}}}{\vec {F}}, действующей на неподвижный точечный заряд, помещённый в данную точку поля, к величине этого заряда {\displaystyle q}q[1]:
Напряжённость электрического поля иногда называют силовой характеристикой электрического поля, так как всё отличие от вектора силы, действующей на заряженную частицу, состоит в постоянном[2] множителе.
В каждой точке в данный момент времени существует своё значение вектора {\displaystyle {\vec {E}}}\vec E (вообще говоря — разное[3] в разных точках пространства), таким образом, {\displaystyle {\vec {E}}}\vec E — это векторное поле. Формально это отражается в записи
представляющей напряжённость электрического поля как функцию пространственных координат (и времени, так как {\displaystyle {\vec {E}}}\vec E может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.
Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].
Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и равная отношению силы {\displaystyle {\vec {F}}}{\vec {F}}, действующей на неподвижный точечный заряд, помещённый в данную точку поля, к величине этого заряда {\displaystyle q}q[1]:
Напряжённость электрического поля
{\displaystyle {\vec {E}}}\vec E
Размерность
LMT−3I−1
Единицы измерения
СИ
В/м
Примечания
векторная величина
{\displaystyle {\vec {E}}={\frac {\vec {F}}{q}}.}{\displaystyle {\vec {E}}={\frac {\vec {F}}{q}}.}
Напряжённость электрического поля иногда называют силовой характеристикой электрического поля, так как всё отличие от вектора силы, действующей на заряженную частицу, состоит в постоянном[2] множителе.
В каждой точке в данный момент времени существует своё значение вектора {\displaystyle {\vec {E}}}\vec E (вообще говоря — разное[3] в разных точках пространства), таким образом, {\displaystyle {\vec {E}}}\vec E — это векторное поле. Формально это отражается в записи
{\displaystyle {\vec {E}}={\vec {E}}(x,y,z,t),}{\vec E}={\vec E}(x,y,z,t),
представляющей напряжённость электрического поля как функцию пространственных координат (и времени, так как {\displaystyle {\vec {E}}}\vec E может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.
Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].
Виктория, задача решается так:
Дано:
Е = 200 В/м
а = 0,5 м
ε0 = 8,85•10*-12 Ф/м
Найти τ
Е = Q / 4•π•ε0•r*2 где: r - расстояние от заряда до точки наблюдения.
Q = τ•L тогда:
Е = τ•L / 4•π•ε0•r*2
Т. к. заряд Q несёт вся проволока, длину которой будем считать бесконечной, то элемент длины dL будет создавать элементарный заряд dE:
dE = [τ / 4•π•ε0•(a/cosα)*2]•dL (1)
dL = (a/cosα)•dα (2)
Подстаавим (2) в (1):
E = 2•∫[от 0 до π/2] [τ / 4•π•ε0•(a/cosα)*2]•(a/cosα)•dα (3) - в силу симметрии берётся удвоенный интеграл [от 0 до π/2], а не от [от -π/2 до π/2].
Преобразуем (3):
E = ∫[от 0 до π/2] [τ / 2•π•ε0•a]•cosα•dα = [τ / 2•π•ε0•a]• ∫[от 0 до π/2]cosα•dα
E = [τ / 2•π•ε0•a]• sinα [от 0 до π/2] = τ / 2•π•ε0•a
Откуда:
τ = 2•π•ε0•a•E
Вычислим:
τ = 2•3,14•8,85•10*-12 Ф/м • 0.5 м • 200 В/м = 5,6•10*-9 Кл/м - ответ.