Пригадайте байку І.А.Крилова "Лебідь, рак та щука". Розгляньте малюнок. Приведіть його у відповідність до реальності: оберіть значення сил відповідно до можливостей персонажів. За власним малюнком спробуйте визначити значення сил, докладених кожним. Зробіть обчислення та креслення в робочому зошиті. Запишіть свої відповіді в строку тесту. *
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
Дано: a=3см/c^2=0,03м/с^2; v1=18км/ч=5м/c; v2=54км/ч=15м/c s-? По условию, оба поезда одинаковый путь, т.е S1=S2; Для первого тела этот путь равен v0t+at^2/2=0,03*t^2/2 Для второго тела этот путь равен v(средняя второго поезда)*t, найдем её: Vср=L/T T=t1+t1 (время на первом участке и время на втором участке); t1=L1/v1=L/2V1; t2=L2/v2=l/2V2; (L1 и L2 - путь на первом и втором участке соответственно); Тогда T=L/2V1+L/2V2=L/2*((V1+V2)/(V1*V2)); Тогда Vср=2(V1*V2)/(V1+V2)=2*5*15/(5+15)=7,5м/c; S1=S2; 0,03t^2/2=7,5t; 0,03t^2=15t; 0,03t=15; t=15/0,03=500с; Оба поезда одинаковый путь, поэтому нам достаточно найти путь одного поезда: s=7,5*500=3750 (м) ответ:s=3750 м
Среднюю скорость катера можно сосчитать по формуле:
\[{\upsilon _{ср}} = \frac{{{S_1} + {S_2}}}{{{t_1} + {t_2}}}\]
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
\[\left\{ \begin{gathered}
{t_1} = \frac{S}{{2{\upsilon _1}}} = \frac{S}{{4{\upsilon _2}}} \hfill \\
{t_2} = \frac{S}{{2{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Подставим выражения для времен \(t_1\) и \(t_2\) в формулу средней скорости.
\[{\upsilon _{ср}} = \frac{S}{{\frac{S}{{4{\upsilon _2}}} + \frac{S}{{2{\upsilon _2 = \frac{S}{{\frac{{3S}}{{4{\upsilon _2 = \frac{{S \cdot 4{\upsilon _2}}}{{3S}} = \frac{{4{\upsilon _2}}}{3}\]
Значит необходимая нам скорость \(\upsilon_2\) определяется по такой формуле.
a=3см/c^2=0,03м/с^2;
v1=18км/ч=5м/c;
v2=54км/ч=15м/c
s-?
По условию, оба поезда одинаковый путь, т.е S1=S2;
Для первого тела этот путь равен
v0t+at^2/2=0,03*t^2/2
Для второго тела этот путь равен
v(средняя второго поезда)*t, найдем её:
Vср=L/T
T=t1+t1 (время на первом участке и время на втором участке);
t1=L1/v1=L/2V1;
t2=L2/v2=l/2V2; (L1 и L2 - путь на первом и втором участке соответственно);
Тогда T=L/2V1+L/2V2=L/2*((V1+V2)/(V1*V2));
Тогда Vср=2(V1*V2)/(V1+V2)=2*5*15/(5+15)=7,5м/c;
S1=S2;
0,03t^2/2=7,5t;
0,03t^2=15t;
0,03t=15;
t=15/0,03=500с;
Оба поезда одинаковый путь, поэтому нам достаточно найти путь одного поезда:
s=7,5*500=3750 (м)
ответ:s=3750 м